No. of Printed Pages : 15

BMTC-134

BACHELOR'S DEGREE PROGRAMME

(BDP)

Term-End Examination

June, 2024

BMTC-134 : ALGEBRA

Time : 3 Hours

Maximum Marks : 100

Note : (*i*) *There are eight questions in this paper.*

(ii) Question No. 8 is compulsory.

(iii) Do any **six** questions from Question Nos.

1 to 7.

(iv) Use of calculator is not allowed.

1. (a) Let:

$$\mathbf{G} = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} | a, b, c, d \in \mathbf{R}, ad - bc \neq 0 \right\}.$$

Check whether or not G is a group under multiplication. Is G an abelian group ? Justify your answers. 5

- (b) Find the units of : 3
 - (i) **Z**
 - (ii) **Q**
- (c) Let :

 $\alpha = \begin{pmatrix} 2 & 1 & 5 \end{pmatrix}, \quad \beta = \begin{pmatrix} 2 & 3 & 5 & 4 \end{pmatrix} \in S_5.$

Compute $\sigma = \alpha \cdot \beta^{-1}$. Write σ as a product of transpositions. Further, find sign σ .

(d) Check whether or not : 3

(i)
$$\left\{\overline{0},\overline{2},\overline{4}\right\} \subseteq \mathbf{Z}_5$$
 is a subgroup of \mathbf{Z}_5 .

(ii)
$$\left\{\overline{0},\overline{2},\overline{4}\right\} \subseteq \mathbf{Z}_6$$
 is a subgroup of \mathbf{Z}_6 .

- 2. (a) Give an example, with justification of a subring of a ring which is not an ideal of the ring. Further, find I∩J and I + J, where I = 2Z, J = 3Z in Z.
 - (b) Let G be a group. Find the conditions on G under which φ: G→G, φ(g) = g⁻¹ will be a group homomorphism. Find ker φ. Is φ surjective ? Why or why not ?
 - (c) Find (132, -250) using the Euclidean algorithm. Also, find m and n in Z such that: 5

$$m(132) + n(-250) = (132, -250).$$

3. (a) Let R be a ring with ideals I and J such that $J \subseteq I$. Prove that : 7

$$\frac{(\mathbf{R} / \mathbf{J})}{(\mathbf{I} / \mathbf{J})} \simeq \left(\frac{\mathbf{R}}{\mathbf{I}}\right)$$

P. T. O.

- (b) Find the quotient field of $\mathbf{Q}[\sqrt{5}][x]$. 3
- (c) Find all the subgroups of \mathbf{Z}_{20} and give a

subgroup diagram for
$$\mathbf{Z}_{20}$$
. 5

4. (a) Let A =
$$\{a, b, c\}$$
 and B = $\{b, c\}$. Let $p(X)$

denote the power set X. Then show that p (B) $\subseteq p$ (A). Also find all the distinct left cosets of p (B) in p (A). 6

(b) Check whether
$$\frac{\mathbf{Q}[x]}{\left\langle 9+x+6x^3\right\rangle}$$
 is a field or

(c) Let $\mathbf{S}' = \left\{ z \in \mathbf{C}^* \mid \left| z \right| = 1 \right\}$ and \mathbf{U}_n be the set

of *n*th roots of unity, $n \in \mathbb{N}$. Check whether or not $U_n \Delta S'$. 5. (a) Let $R = Z_{12}$. Give, with justification (i) a nilpotent element of R; (ii) a zero-divisor of R that is not a nilpotent, (iii) char R. 6

- (b) State the converse of Lagrange's theorem.Prove or disprove, this statement. 9
- 6. (a) Show that :

$$\mathbf{S} = \left\{ \begin{bmatrix} 0 & a \\ 0 & b \end{bmatrix} \middle| a, b \in \mathbf{R} \right\}$$

is a ring with respect to the usual addition and multiplication of matrices. Is it a ring with unity ? Is S commutative ? Give reasons for your answers. 8

P. T. O.

[5]

(b) Prove that every maximal ideal of a commutative ring R with unit is a prime ideal.

Further, if R has two distinct maximal ideals M_1 and M_2 , will M_1+M_2 be a maximal ideal of R? Why or why not? 5

(c) By considering the Cayley table below,
 decide whether the operation * is
 commutative or not : 2

*	a	b	С
a	b	с	a
b	a	b	с
c	с	a	b

7. (a) Let G be a group with trivial centre. FindZ (Aut G). 5

(b) Show that $\frac{\mathbf{R}[x]}{\langle x \rangle}$ and **R** are isomorphic rings. 7

- (c) Let R be a ring which satisfies the cancellation law for multiplication. Find all the zero divisors in R.
- 8. Which of the following statements are true and which are false ? Justify your answers (with a short proof, or with a counter-example, whichever is appropriate) : 10
 - (i) \mathbf{Z}_{10} is a subgroup of \mathbf{Z}_{20} .
 - (ii) If F is a field, then F × F is an integral domain.
 - (iii) char R = char R [x], for any integral domain R.

P. T. O.

[7]

(iv) If G is a group and H Δ G s.t. $\frac{G}{H}$ is abelian,

then G is abelian.

(v) If R is a ring with identity, then every subring of R is also a ring with identity.

BMTC-134

स्नातक उपाधि कार्यक्रम (बी. डो. पो.) सत्रांत परीक्षा जून, 2024

बी. एम. टी. सी.-134 : बीजगणित

समय : 3 घण्टे अधिकतम अंक : 100

नोट : (i) इस प्रश्न पत्र में आठ सवाल हैं।

- (ii) सवाल संख्या **8** करना अनिवार्य है।
- (iii) प्रश्न संख्या 1 से 7 में तक कोई भी 6 सवाल कीजिए।
- (iv) कैलकुलेटर प्रयोग करने की अनुमति नहीं है।

1. (क) मान लीजिए कि :

$$\mathbf{G} = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} | a, b, c, d \in \mathbf{R}, ad - bc \neq 0 \right\}$$

P. T. O.

(i) **Z**
(i) **Q**
(ii) **Q**
(v) मान लीजिए :

$$\alpha = (2 \ 1 \ 5), \ \beta = (2 \ 3 \ 5 \ 4) \in S_5$$

 $\sigma = \alpha \cdot \beta^{-1}$ परिकलित कीजिए। क्रमचय σ के
पक्षन्तरणों के गुणनफल के रूप में लिखिए। आगे,
 σ का चिह्नक ज्ञात कीजिए। 4
(घ) जाँच कीजिए कि : 3
(i) $\{\overline{0}, \overline{2}, \overline{4}\} \subseteq \mathbf{Z}_5$ का उपसमूह है या नहीं।
(ii) $\{\overline{0}, \overline{2}, \overline{4}\} \subseteq \mathbf{Z}_6$ का उपसमूह है या नहीं।

जाँच कोजिए कि G आव्यूह गुणन के सापेक्ष समूह है या नहीं ? क्या G एक आबेली समह है ? अपने उत्तर की पुष्टि कीजिए। 5 (ख) निम्नलिखित वलय के मात्रक ज्ञात कीजिए : 3

[10]

 (ख) मान लीजिए G एक समूह है। φ:G→G,
 φ(g) = g⁻¹ एक समाकारिता होने का प्रतिबंध बताइए। आगे, यदि φ का अष्टि ज्ञात कीजिए।
 क्या φ आच्छादक है। क्यों या क्यों नहीं ? 4

(ग) यूक्लिडीय कलन विधि से (132, -250) ज्ञात
 कीजिए। आगे m,n ∈ Z भी ज्ञात कीजिए।
 जिसके लिए : 5

m(132) + n(-250) = (132, -250).

 (क) मान लीजिए कि I और J वलय R के गुणजावलियाँ हैं और J ≤ I। सिद्ध कीजिए कि :

$$\frac{(\mathbf{R} / \mathbf{J})}{(\mathbf{I} / \mathbf{J})} \simeq \left(\frac{\mathbf{R}}{\mathbf{I}}\right)$$

P. T. O.

7

- (ख) पूर्णांकीय प्रान्त $\mathbf{Q}[\sqrt{5}][x]$ का विभाग क्षेत्र ज्ञात कीजिए। 3
- (ग) समूह \mathbf{Z}_{20} का सभी उपसमूह ज्ञात कीजिए और \mathbf{Z}_{20} क उपसमूह आरेख दीजिए। 5
- 4. (क) मान लीजिए $A = \{a, b, c\}$ और $B = \{b, c\}$ । मान लीजिए p(X) समुच्चय X का उपसमुच्चयों का समुच्चय है। दिखाइए कि p (B) $\subseteq p$ (A)। आगे p(A) में p(B) का अलग-अलग काम सहसमुच्चय निकालिए। 6

(ख) जाँच कीजिए कि
$$\frac{\mathbf{Q}[x]}{\left<9+x+6x^3\right>}$$
 एक क्षेत्र है या

नहीं। 5

(ग) मान लीजिए $S' = \{z \in C^* | |z| = 1\}$ और U_n एकक nवें मूलों का समुच्चय है। जाँच कीजिए कि $U_n \Delta S'$ । 4

[13] **BMTC-134** 5. (क) मान लीजिए $R = Z_{12}$ पुष्टि के साथ (i) R का एक शून्यभावी अवयव; (ii) R का एक शून्य भाजक जो शून्यभावी न हो, (iii) char R दीजिए। 6 (ख) लग्रांन्ज प्रमेय का प्रतिलोम लिखिए। इस कथन को सत्यापित या असत्यापित कीजिए। 9

6. (क) दिखाइए कि :

 $\mathbf{S} = \left\{ \begin{bmatrix} 0 & a \\ 0 & b \end{bmatrix} \middle| a, b \in \mathbf{R} \right\}$

आव्यूह जोड और गुणन के सापेक्ष वलय है। क्या यह तत्समकी वलय है ? अपने उत्तर के कारण बताइए। 8 (ख) सिद्ध कीजिए कि एक तत्समकीय वलय R का उच्चिष्ठ गुणजावली अभाज्य गुणजावली होता है।

आगे यदि R में दो अलग-अलग उच्चिष्ठ

P. T. O.

[14] BMTC-134 गुणजावलियाँ हैं। क्या M₁+M₂ वलय के उच्चिष्ठ गुणजावली होगी ? क्यों, या क्यों नहीं ? 5 (ग) निम्नलिखित कैली तालिका देखिए और निर्णय कीजिए कि संक्रिया * क्रमविनिमेय है या नहीं :

 $\mathbf{2}$

*	a	b	с
a	b	с	a
b	a	b	c
С	с	a	b

 (क) मान लीजिए कि G एक समूह है, जिसका केन्द्र तुच्छ है। Z (Aut G) ज्ञात कीजिए।

(ख) दिखाइए कि $rac{{f R}[x]}{\langle x
angle}$ और R तुल्याकारी वलय है।7

(ग) मान लीजिए R एक वलय है जो गुणन के सापेक्ष निरसर नियम संतुष्ट करता है। R के सभी शून्य करणी ज्ञात कीजिए।

- तिम्नलिखित कथनों में से कौन-से कथन सत्य और कौन-से कथन असत्य हं ? अपने उत्तर की पुष्टि एक लघु उपपत्ति या प्रति-उदाहरण, जो भी उचित है, द्वारा दीजिए : 10
 - (i) समूह \mathbf{Z}_{10} समूह \mathbf{Z}_{20} का उपसमूह है।
 - (ii) यदि F एक क्षेत्र है, तो F × F एक पूर्णांकीय
 प्रान्त है।
 - (iii) कोई भी पूर्णांकीय प्रान्त R के लिए char R =
 char R [x]
 - (iv) यदि G एक समूह है H∆G और $\frac{G}{H}$ आबेली है, तो G आबेली है।
 - (v) यदि R एक तत्समकीय वलय है, तो R का प्रत्येक उपवलय तत्समकीय वलय है।

BMTC-134