POST GRADUATE DIPLOMA IN APPLIED STATISTICS (PGDAST) Term-End Examination

June, 2023

MST-004 : STATISTICAL INFERENCE

Time : 3 Hours
Maximum Marks : 50

Note : Question No. 1 is compulsory. Attempt any four questions from the remaining Question Nos. 2 to 7. Use of scientific (nonprogrammable) calculator is allowed. Use of Formulae and Statistical Tables Booklet for PGDAST is allowed. Symbols have their usual meanings.

1. State whether the following statements are True or False. Give reasons in support of your answers:
$2 \times 5=10$
(a) If sample size of a survey has decreased by 5%, then the standard error will also decrease by 50%.
P. T. O.
(b) If probability density function of a χ^{2} distribution is :

$$
f\left(\chi^{2}\right)=\frac{1}{4} e^{-\frac{\chi^{2}}{2}} \chi^{2} ; 0<\chi^{2}<\infty
$$

then the degrees of freedom of the distribution will be 2 .
(c) Consider a hypothesis $\mathrm{H}_{0}: \mathrm{P}=\mathrm{P}_{0}=\frac{1}{2}$ against $\mathrm{H}_{1}: \mathrm{P}=\mathrm{P}_{1}=\frac{1}{4}$ on the basis of tossing a coin once, where P is the probability of getting head in a single toss. If we reject H_{0} when a head appears, then the size of the test is 0.5 .
(d) If a random sample of marks is $36,22,30$, 45 and 29 , then the sum of the positive ranks will be 7 for applying Wilcoxon signed-rank test.
(e) The number of possible samples of size 2 with replacement from a population of size 5 will be 25 .
2. The age (in years) of five workers of a manufacturing unit are as follows :

$$
28,24,30,26,32
$$

(a) How many samples of size 2 are possible without replacement? Write them.
(b) Compute the mean of the samples obtained in (a) and set up the sampling distribution of the sample mean.
(c) Compute the expected value of the sample mean.
(d) How many samples of the same size are possible with replacement ? Calculate expected value of the sample mean and compare it with the expected value for the case of without replacement.
$2+2+2+4$
3. (a) The following data give the sales of 7 models of mobiles at four different stores. The sales of each mobile (in number of mobiles sold) from each store are given below :

Store A	Store B	Store C	Store D
58	74	35	78
55	57	51	85
38	65	41	62
63	48	52	75
41	83	54	87
50	61	53	57
43	68	57	66

P. T. O.

Test whether there is a significant difference in the sales of the four stores by using a suitable test at 1% level of significance.
(b) Explain 'run' in non-parametric tests with an example.
4. (a) An experiment was conducted to compare the defective items produced by two different machines A and B . The data on number of defective items produced by both machines were observed and are given in the following table :

A	B
26	19
37	22
40	24
35	27
30	24
30	18
40	20
26	19
30	25
35	
45	

Assuming that the parent populations are normal, test that the variance of the
defective items produced by machine A is greater than machine B at 1% level of significance.
(b) Write a short note on the 'Central Limit Theorem'.
5. (a) A sample of 200 persons is chosen at random from a colony of a given city. 60% of them were tested corona positive. If large number of persons were tested for corona, then compute 95% confidence interval for the proportion of corona positive persons.
(b) The number of correct answers out of total 10 questions before and after attending the counselling sessions were recorded for 10 candidates in the following table :

Candidate Number	Correct Answers (before)	Correct Answers (after)
1	5	7
2	6	7
3	4	6
4	7	9

P. T. O.

5	7	8
6	6	9
7	8	9
8	4	6
9	6	6
10	5	7

Calculate 95% confidence interval for the average change in the correct answers after counselling sessions.
(c) Write various properties of good estimator. Explain anyone. 2
6. (a) The average weight of all persons living in a small town is 60 kg and standard deviation of weights is 25 kg . If a sample of 36 persons is selected at random, find the probability that persons having their average weights are :
(i) more than 70 kg ,
(ii) less than 50 kg ,
(iii) between 50 kg and 65 kg .
(b) Describe the properties and applications of t-test.
7. (a) Explain the method of maximum likelihood and its properties.
(b) If $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots . . \mathrm{X}_{n}$ is a random sample taken from Poisson distribution (λ), then show that sample mean $(\overline{\mathrm{X}})$ is a consistent estimator of λ. 5

