M. SC. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE [MSC (MACS)]

 Term-End Examination

 Term-End Examination

 June, 2023

 June, 2023
 MMTE-006 : CRYPTOGRAPHY

Time : 2 Hours
Maximum Marks : 50
Note: (i) Answer any four questions from question nos. 1 to 5.
(ii) Question No. 6 is compulsory.

1. (a) Define a primitive element in a finite field \mathbf{F}_{q}. Give a primitive in \mathbf{F}_{7} with justification.
(b) Let n and b be natural numbers such that $\left(n_{i} b\right)=1$. When do we say that n is a pseudoprime of the base b ? Check whether 91 is a pseudoprime to the base 3 . 2
P. T. O.
(c) Decrypt the following clipher text which was encrypted using Vigenere Cipher with the key word "SECRET", KYTXIMGQQIVHO.
(d) Explain the Cipher Block chaining and Cipher Feedback modes of operations of block cipher.
2. (a) Explain the Blum-Blum-Shub pseduorandom bit generator. Calculate the first five terms generated by Blum-Blum-Shub pseudo-random generator if $p=11, q=19$ and $x_{0}=7$.
(b) Explain the Miyaguchi-Prencel method for creating hash function with a diagram. 3
(c) Suppose Alice and Bob want to exchange a secret key using Diffie-Hellman key exchange algorithm. They choose the prime 31 with primitive root 3 . Bob chooses the secret value 5 and Alice chooses 7. Find the common secret key explaining all the steps.
(d) Let $n=21, e=5$ is a RSA cryptosystem. If the plain text is 10 , find the cipher text.
3. (a) Determine the number of keys in an Affine cipher over \mathbf{Z}_{m} where $m=1225$.
(b) Given the initial sequence 110010111001, find the recurrence relation that generates it.
(c) Check whether $x^{3}+4 x^{2}+4$ is irreducible over \mathbf{Z}_{5}.
4. (a) Given the values $a=161$ and $b=28$, find gcd (a, b) by using the Extended Euclidean algorithm and also find s and t such that $s a+t b=\operatorname{gcd}(a, b)$.
(b) Suppose Alice wants to sign messages using Elhamal signature scheme and she chooses $p=29$ and 3 as the primitive root. She chooses the secret parameter $a=9$. She makes public the values ($29,3,21$). If she wants to send the message 25 to Bob, find the signature if she chooses $k=5$. Explain in detail how Bob will verify the signature.
5. (a) Solve the discrete logarithm $2^{x} \equiv 19(\bmod 29)$ using Baly-step, Giant step method.
(b) Decrypt the text 001011011001 that was encrypted twice with the by block cipher
P. T. O.
using the key 010100110. The S-boxes are given below :

$$
\begin{aligned}
& S_{1}\left[\begin{array}{lllllllll}
101 & 010 & 001 & 110 & 011 & 100 & 111 & 000 \\
001 & 100 & 110 & 010 & 000 & 111 & 101 & 011
\end{array}\right] \\
& S_{2}\left[\begin{array}{lllllllll}
100 & 000 & 110 & 101 & 111 & 001 & 011 & 000 \\
101 & 011 & 000 & 111 & 110 & 010 & 001 & 100
\end{array}\right]
\end{aligned}
$$

6. Which of the following statements are true and which are false ? Justify your answers with a short proof or a counter example :
(a) There is a finite field with 12 elements.
(b) Harsh function is used for ensuring confidentiality of information.
(c) S boxes provide confusion
(d) If n is a product of two primes and use know the value of $\varphi(n)$, we can factorize n.
(e) Vigenere cipher is a monoalphabetic, substitution cipher.
