M. SC. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) [M. SC. (MACS)]

 Term-End Examination

 Term-End Examination June, 2023 June, 2023 MMTE-005 : CODING THEORY

 MMTE-005 : CODING THEORY}

Time : 2 Hours
Maximum Marks : 50
Note: (i) Answer any four questions from question nos. 1 to 5.
(ii) Question No. $\boldsymbol{6}$ is compulsory.
(iii) Use of calculator is not allowed.
(iv) Show all the relevant steps. Do the rough work at the bottom or at the side of the page only.

1. (a) When do we say that the generator matrix of a $[n, k]$ linear code is in standard form ? Check whether the generator matrix :

$$
\mathrm{G}=\left[\begin{array}{lllll}
1 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1
\end{array}\right]
$$

of a linear code \mathbf{C} is in standard form or not. Also, determine the length and dimension of \mathbf{C} ? 3
P. T. O.
(b) Define permutation equivalence of linear codes. Check whether the codes \mathbf{C}_{1} and \mathbf{C}_{2} with generator matrices $G_{1}=\left[\begin{array}{llll}1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0\end{array}\right]$ and $\mathrm{G}_{2}=\left[\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1\end{array}\right]$, respectively, are permutation equivalent.2
(c) Let $n \in \mathbf{N}, q$ be a power of a prime and $0 \leq s<n$. Define the q-cyclotomic coset of s modulo n. Find the 13 -cyclotomic set of 1 modulo 17.
(d) Let \mathbf{C} be a $[7,4]$ binary cyclic code with generator polynomial $x^{3}+x+1$. Find the generator matrix and the parity check matrix of the code.
2. (a) What is a repetition code ? If, in a repetition code in which a message of length two is sent thrice, the codeword 11 1010 is received, decode the message assuming there is at most one error.
(b) Define a cyclic code, Check whether the code $\{110,011,101\}$ is cyclic.
(c) Let \mathbf{C}_{1} be the $\left[\begin{array}{lll}4 & 3 & 2\end{array}\right]$ binary linear code generated by :

$$
\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

and let \mathbf{C}_{2} be the [4, 1, 4]-binary linear code generated by [1111]. Let \mathbf{C} be the code obtained through using $(u \mid u+v)$ construction on the codes \mathbf{C}_{1} and \mathbf{C}_{2}. Find the generator matrix of \mathbf{C}. Also give the length and the dimension of \mathbf{C}.
(d) Find the g.c.d. of $x^{5}-x^{4}+x+1$ and $x^{3}+x$ in \mathbf{F}_{5}.
3. (a) Construct the Tanner graph for the given parity check matrix H of an LDPC code. Further, does the graph contain a cycle ? Justify your answer :

$$
\left[\begin{array}{lllllll}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right]
$$

(b) Let \mathbf{C} be a self-dual $[16,8,4]$ doubly even binary code. Find the weight enumerator of C by using Mac Williams identities.
4. (a) Show that the \mathbf{Z}_{4}-linear codes with generator matrices :

$$
\mathrm{G}_{1}=\left[\begin{array}{llll}
1 & 1 & 1 & 3 \\
0 & 2 & 0 & 2 \\
0 & 0 & 2 & 2
\end{array}\right] \text { and } \mathrm{G}_{2}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 0 & 2 & 2 \\
2 & 0 & 0 & 2
\end{array}\right]
$$

are monomially equivalent.

i	α^{i}
1	α
2	α^{2}
3	$\alpha+2$
4	$\alpha^{2}+2 \alpha$
5	$2 \alpha^{2}+\alpha+2$
6	$\alpha^{2}+\alpha+1$
7	$\alpha^{2}+2 \alpha+2$
8	$2 \alpha^{2}+2$
9	$\alpha+1$
10	$\alpha^{2}+\alpha$
11	α^{i}
15	2α
12	$\alpha^{2}+\alpha+2$
12	$\alpha^{2}+2$
13	2
17	$2 \alpha+1$
18	$2 \alpha^{2}+\alpha$
19	$\alpha^{2}+2 \alpha+1$
19	$2 \alpha^{2}+2 \alpha+2$
20	$2 \alpha^{2}+\alpha+1$
21	$\alpha^{2}+1$
22	$2 \alpha+2$
23	$2 \alpha^{2}+2 \alpha$
24	$2 \alpha^{2}+2 \alpha+1$
25	$2 \alpha^{2}+1$
$\alpha^{3}+2 \alpha+1=0$.	

(b) If $x, y \in \mathbf{F}_{2}^{n}$, show that:

$$
w t(x+y)=w t(x)+w t(y)-2 w t(x \cap y)
$$

where $x \cap y$ is that vector in \mathbf{F}_{2}^{n} which has 1 precisely those positions, where x and y have 1. Further, show that if \mathbf{C} is a binary code with a generator matrix, each of whose rows have even weight, then every codeword of \mathbf{C} has even weight.
5. (a) Let \mathbf{F}_{q} have characteristic p. Prove that: 2

$$
(\alpha+\beta)^{p}=\alpha^{p}+\beta^{p}
$$

(b) Construct a $[13,10] \mathrm{BCH}$ code over \mathbf{F}_{3} with designed distance 2. Use $x^{3}+2 x+1 \in \mathbf{F}_{3}[x] \quad$ as the primitive polynomial and Table 1. 5
(c) If a polynomial generator matrix of an [n, k] convolutional code \mathbf{C} is basic and reduced, then prove that it is canonical. 3
6. Which of the following statements are true and which are false ? Justify your answer with short proof or a counter-example :
(a) The code over \mathbf{F}_{3} with generator matrix

$$
\left[\begin{array}{lllll}
1 & 2 & 0 & 0 & 1 \tag{2}\\
0 & 0 & 1 & 0 & 0 \\
2 & 0 & 1 & 0 & 1
\end{array}\right] \text { is self-orthogonal. }
$$

(b) Every cyclic code is self dual.
(c) $x^{3}+x-1$ is irreducible over \mathbf{F}_{5}. 2
(d) There are two different codes with the same generator matrix. 2
(e) The number of 3-cyclotomic cosets modulo 26 is 3.

2

