No. of Printed Pages : 5

MMTE-003

M. Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) [M. Sc. (MACS)] Term-End Examination June, 2023 MMTE-003 : PATTERN RECOGNITION AND IMAGE PROCESSING

Time : 2 Hours

Maximum Marks : 50

Note: Attempt any five questions. All questions carry equal marks. Use of calculator is not allowed. All symbols used have their usual meanings.

- 1. (a) Define the terms 'Sampling' and 'Quantization' in context of digital image processing. A medical image has size 8×8 inches, the sampling reduction is 5 cycles/mm, calculate the number of pixels required for the said medical image. 6
 - (b) What do you understand by the term "Entropy" in context of any digital image ? Calculate the entropy for the symbols,

[2]

where probability distribution is given below: 4

Symbol	Probability	
1	0.4	
2	0.3	
3	0.1	
4	0.1	
5	0.1	

2. (a) What is Discrete Fourier Transform (DFT) ? Find DFT of the function : 5

$$f(x, y) = \sin\left(2\pi u_0 x + 2\pi v_0 y\right)$$

(b) Apply Prewitt operators and Sobel operators for the image given below : 5

$$\begin{bmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \\ a_7 & a_8 & a_9 \end{bmatrix}$$

3. (a) Briefly discuss the term Histogram stretching. Perform histogram stretching on the 8×8 , 8-level grey image, whose distribution is given ahead : 6

[3	3]
----	----

Grey levels (r_k)	No. of Pixels (p_k)
0	0
1	0
2	5
3	20
4	20
5	19
6	0
7	0

(b) What is a Brand Pass Filter ? How is it related to the band reject filter ? 4

- 4. (a) Why do we determine Laplacian of an image ? What are the drawbacks of the Laplacian operator ? Show that subtracting the Laplacian of an image from the image concerned is proportional to the unsharp masking of the image.
 - (b) Perform Linear Convolution and also obtain the Linear correlation between the two matrices X (m, n) and h(m), given below:

$$\mathbf{X}(m,n) = \begin{bmatrix} 11 & 12 & 13 \\ 14 & 15 & 16 \\ 17 & 18 & 19 \end{bmatrix}$$

and h(m) = [3, 4, 5].

- 5. (a) How the Histogram stretching, Histogram equalization and Histogram specification relates to the finding of quality of any digital image ? Discuss with suitable example for each.
 - (b) Perform Histogram equalization for the 8×8 image, whose details are given below :

Grey level (r_k)	No. of Pixels (p_k)
0	8
1	10
2	10
3	2
4	12
5	16
6	4
7	2

6. (a) Determine the Euclid, Manhattan average, and Chebychev distances, for the two objects O_1 and O_2 whose attributes x_1 and

 x_2 are tabulated below :

6

Attribute Object	<i>x</i> ₁	<i>x</i> ₂
O_1	5	6
O_2	2	3

- (b) Compare clustering and classification. List at least *two* algorithms for each. 4
- 7. (a) List the steps of Canny Edge detection algorithm. Briefly discuss each stage. 4
 - (b) Compute the degree of compression of the following image using : 6
 - (i) Huffman coding
 - (ii) Run length coding,

assuming two bits to represents the pixel value and two bits to represents the run lenght :

$$\mathbf{I} = \begin{bmatrix} 7 & 7 & 7 & 1 \\ 1 & 7 & 7 & 7 \\ 7 & 1 & 1 & 1 \\ 1 & 5 & 5 & 0 \end{bmatrix}$$