M. Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) [M. Sc. (MACS)]
 Term-End Examination
 June, 2023

 MMTE-002 : DESIGN AND ANALYSIS OF

 MMTE-002 : DESIGN AND ANALYSIS OF ALGORITHMS

 ALGORITHMS}

Note : Answer any four questions from Question
Nos. 1 to 5. Question No. 6 is compulsory.

1. (a) Define and explain the Big-O, Big- Ω and Big- Θ notations with examples.
(b) Explain the string matching problem with an example.
(c) Explain the Longest Common Subsequence problem with an example.
2. (a) Illustrate the working of the function PARTITION of the quick sort algorithm using the array :

$$
<24,75,26,15,67,54,31,49>
$$

(b) Illustrate all the steps of Rabin-KarpMiller string algorithm for the pattern $\mathrm{P}=1312$, modulus $\mathrm{Q}=9$ and the string 2702251312167. Indicate all the spurious matches.
3. (a) Construct the Huffman code tree for the set of frequencies in the table below :

Character	Frequency
A	5
B	1
C	6
D	3
E	4

(b) Find an optimal parenthesisation of the matrix chain product whose sequence of dimensions is $10,25,10,5,17$.
4. (a) Find the minimum spanning tree for the following graph using Kruskal's algorithm :

(b) Let $a=352, b=671$. Find s and t such that $a s+b t=\operatorname{gcd}(a, b)$. Show the steps of the algorithm.
5. (a) Explain the breadth first search algorithm using the graph given below with v_{1} as the source vertex :

For each stage of the algorithm give :
(i) $d(v), \pi(v)$ for each vertex, where $d(v)$ is the distance from the source to the vertex v and $\pi(v)$ is the predecessor of v.
(ii) White and gray vertices
(iii) Vertices in the queue

Also, give the breadth search tree.
(b) Check whether the following array represents a max-heap. If not run the MAX-HEAPIFY algorithm to convert it into a max-heap :

$$
6,20,18,15,17,11,12,13
$$

6. Which of the following statements are true and which are false ? Justify your answer with short proof or a counter-example :
(a) An array in ascending order in a maxheap.
(b) The following tree is a binary search tree :

(c) The Longest Common Subsequence problem always has a unique solution.
(d) If the weights of the edges of a graph are distinct, the graph has a unique minimal spanning tree.
(e) A polynomial $p(x)$ of degree n can be evaluated at a point x_{0} in $\mathrm{O}(n)$ time.
