M. Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) [M. Sc. (MACS)]
 Term-End Examination
 June, 2023
 MMTE-001 : GRAPH THEORY

Time : 2 Hours
Maximum Marks : 50
Note : Question No. 1 is compulsory. Answer any four questions from Question Nos. 2 to 7. Use of calculators is not allowed. Symbols used have their usual meaning.

1. State whether the following statements are true or false. Justify your answers with a short proof or a counter-example :
(i) If G is a graph with 100 vertices and 1500 edges, then $\overline{\mathrm{G}}$ has 3450 edges.
(ii) The radius and diameter of a complete bipartite graph are always equal.
(iii) Q_{3} is Eulerian.
(iv) $\mathrm{K}_{5,6}$ is 5 -edge-chromatic.
(v) If a graph G has a perfect matching, then every maximal matching of G is perfect.
P. T. O.
2. (a) Does there exist a graph with all vertices having distinct degrees ? Justify your answer.
(b) Show that for any connected graph $\mathrm{G}, \operatorname{diam}(\mathrm{G}) \leq 2 \operatorname{rad}(\mathrm{G}) . \quad 3$
(c) Find the number of $\left(v_{1}, v_{2}\right)$-walks of length 3 in the following graph :

3. (a) Let G be a graph with exactly one path between every pair of vertices. Show that G is a tree.
(b) Prove that a connected multigraph is Eulerian iff all of its vertices have even degree.
4. (a) Show that in a complete binary tree the number of leaves is exactly one more than the number of non-leaves.
(b) Compute the distances of all the vertices from v_{1} in the following graph, using Dijkstra's algorithm :

5. (a) Show that the Grötzsch graph is 4-chromatic.
(b) If G is a planar graph, then show that $\delta(\mathrm{G}) \leq 5$.
(c) What is the thickness of the Peterson graph ? Justify your answer. 2
6. (a) Verify the König-Egerváry theorem for the following graph :

connected? Justify your answer.
(c) Show that every Hamiltonian graph is 2 connected.
P. T. 0.
7. (a) Consider the following network N .

Define a function f on the edges set of N as follows:

$$
\begin{aligned}
& f\left(s v_{1}\right)=7, f\left(s v_{2}\right)=3, f\left(v_{1} v_{2}\right)=5 \\
& f\left(v_{1} v_{3}\right)=2, f\left(v_{2} v_{3}\right)=4, f\left(v_{2} v_{4}\right)=4 \\
& f\left(v_{3} v_{4}\right)=2, f\left(v_{3} t\right)=6, f\left(v_{4} t\right)=6
\end{aligned}
$$

Check whether f represents a flow on N or not.
(b) Check whether the sequence :
$(6,6,5,5,3,3,3,3,1,1)$
is graphic or not.

