M. Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)

[M. Sc. (MACS)]

Term-End Examination
June, 2023
MMT-007 : DIFFERENTIAL EQUATIONS AND NUMERICAL SOLUTIONS
\qquad
Time : 2 Hours
Maximum Marks : 50
Weightage : 50\%
Note: (i) Question No. 1 is compulsory.
(ii) Attempt any four questions out of Q. Nos. 2 to 7.
(iii) Use of scientific (non-programmable) calculator is allowed.
P. T. O.

1. State whether the following statements are True or False. Justify your answer with the help of a short proof or a counter-example. No marks are awarded for a question without justification :

$$
2 \times 5=10
$$

(i) The function $f(x, y)=x y^{2}$ satisfies Lipschitz condition on :

$$
a \leq x \leq b,-\infty<y<\infty
$$

(ii) Fourier transform of :

$$
\begin{aligned}
& f(x)= \begin{cases}1, & |x|<a \\
0, & |x|>a\end{cases} \\
& \text { is } \frac{\sin \alpha a}{\alpha}, \alpha \neq 0 .
\end{aligned}
$$

(iii) For Legendre polynomial :

$$
\mathrm{P}_{n}^{\prime}(x)=\left\{\begin{array}{cl}
\frac{1}{2} n(n+1) ; & \text { for } x=1 \\
(-1)^{n+1} \cdot \frac{1}{2} n(n+1) ; & \text { for } x=-1
\end{array}\right.
$$

(iv) In applying Milne's or Adam-Bashforth method we require four starting values of y which are calculated by means of Picard's or Taylor's series method only.
(v) The order of the method:

$$
\begin{aligned}
u_{x x}=\frac{1}{h^{2}}[u(x+h, y)-2 u(& x, y) \\
& +u(x-h, y)]
\end{aligned}
$$

is three.
2. (a) Using method of Ferobenius, find the solution of the differential equation :

$$
\begin{aligned}
& x^{2} \frac{d^{2} y}{d x^{2}}+\left(x+x^{2}\right) \frac{d y}{d x}+(x-9) y=0 \\
& \text { near } x=0
\end{aligned}
$$

(b) Find:

$$
\mathrm{L}^{-1}\left\{\frac{s}{\left(s^{2}+4\right)^{2}}\right\}
$$

(c) Find $\mathrm{L}\{\mathrm{F}(t)\}$, if:

$$
\mathrm{F}(t)=\left\{\begin{array}{cc}
\sin \left(t-\frac{\pi}{4}\right), & t>\frac{\pi}{4} \\
0, & t<\frac{\pi}{4}
\end{array}\right.
$$

3. (a) Find the solution of the initial boundary value problem :

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}
$$

P. T. 0.
subject to given initial and boundary conditions:

$$
u(x, 0)=2 x \text { for } x \in\left[0, \frac{1}{2}\right]
$$

and $2(1-x)$ for $\left[\frac{1}{2}, 1\right]$

$$
u(0, t)=0=u(1, t)
$$

You may use $h=0.2$ and solve by Schmidt method with $\lambda=\frac{1}{6}$.
(b) Show that the method:

$$
y_{i+1}=\frac{4}{3} y_{i}-\frac{1}{3} y_{i-1}+\frac{2 h}{3} y_{i+1}
$$

is A-stable when applied to test equation $y^{\prime}=\lambda y, \lambda<0$.
4. (a) Using Laplace transform, solve the equation :

$$
\frac{\partial^{2} u}{\partial t^{2}}=9 \frac{\partial^{2} u}{\partial x^{2}}
$$

given that :

$$
\begin{aligned}
u(0, t) & =u(2, t)=0, \quad u_{t}(x, 0)=0 \\
\text { and } u(x, 0) & =10 \sin 2 \pi x-20 \sin 5 \pi x
\end{aligned}
$$

(b) Using second order finite difference method, solve the boundary value problem :

$$
\frac{d^{2} y}{d x^{2}}=\frac{3}{2} y^{2} \text { with } y(0)=4, y(1)=1
$$

using $h=\frac{1}{3}$.
5. (a) Using Rodrigue's formula for Legendre polynomials, show that:

$$
\mathrm{P}_{n}(0)=\left\{\begin{array}{cc}
(-1)^{\frac{n}{2}} & \frac{1.3 \cdot 5 \ldots \ldots . .(n-1)}{2 \cdot 4.6 \ldots \ldots . n}, \text { if } \mathrm{n} \text { is even. } \\
0, & \text { if } n \text { is odd }
\end{array}\right.
$$

(b) Show that the equation :

$$
x^{2} \frac{d^{2} y}{d x^{2}}+k^{2} x y=0
$$

reduces to a Bessel's equation in that substituting $y=\sqrt{x} z$ and then $t=\sqrt{x}$. Write its solution in Bessel's functions.
(c) Find $f(x)$, when :

$$
\int_{0}^{\infty} f(x) \sin \alpha x d x=\left\{\begin{array}{cl}
1-\alpha, & 0 \leq \alpha \leq 1 \\
0 & , \\
\alpha>1
\end{array}\right.
$$

6. (a) Use finite Fourier transform to solve :

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}, \quad 0<x<4, t>0
$$

Subject to the conditions:

$$
\begin{align*}
& \qquad \begin{array}{l}
u(x, 0)=2 x, \quad 0<x<4 \\
\text { and } \quad u(0, t)=u(4, t)=0 \\
\text { for } 0<x<4, t>0
\end{array}
\end{align*}
$$

(b) Solve the boundary value problem:

$$
\begin{gathered}
y^{\prime \prime}+y+f(x)=0 \\
y^{\prime}(0)=0, y(1)=0
\end{gathered}
$$

by determining the appropriate Green's function by using the method of variation of parameters and expressing the solution as a definite integral.
7. (a) Find the solution of the boundary value problem :

$$
\nabla^{2} u=x^{2}+y^{2}, 0 \leq x \leq 1,0 \leq y \leq 1
$$

and $\quad u=\frac{1}{12}\left(x^{4}+y^{4}\right)$
on the boundary using Galerkin method with rectangular elements and one internal node $\left(h=\frac{1}{2}\right)$.
(b) Solve the initial value problem :

$$
y^{\prime}=-2 x y^{2}, y(0)=1
$$

with $h=0.2$ on the interval $[0, .4]$. Use fourth order Runge-Kutta method. 4

