No. of Printed Pages : 4

MMT-006

M. Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) [M. Sc. (MACS)] Term-End Examination June, 2023 MMT-006 : FUNCTIONAL ANALYSIS

Time : 2 Hours Maximum Marks : 50

Note : (*i*) *Question No.* **1** *is compulsory.*

(ii) Answer any four questions from Question Nos. 2 to 6.

(iii) Notations are as in the study material.

- Are the following statements True or False ? Justify your answers : 5×2=10
 - (a) For $x = (a_1, a_2, ..., a_n) \in \mathbf{R}^n$, if a map

 $\|\cdot\|$: $\mathbf{R}^n \to \mathbf{R}$ is defined by $\|x\| = \max_{1 \le i \le n} |a_i|$

, then $\|\cdot\|$ is a norm on \mathbf{R}^n .

P. T. O.

(b) The map f on C_{00} defined as :

$$f(x) = \sum_{n=1}^{\infty} x(n)$$
 for $x = (x(1), x(2), \dots) \in C_{00}$,

is a continuous linear functional on C_{00} .

- (c) The eigen values of a positive self-adjoint operator are always contained in the infinite interval (0,∞).
- (d) Every closed subspace of a reflexive space is reflexive.
- (e) The norm limit of a sequence of unitary operators in B(H) is unitary.
- 2. (a) Define equivalent norms. Prove that two norms $\|\cdot\|_1$ and $\|\cdot\|_2$ on a linear space X are equivalent if and only if there exists positive constants C_1 and C_2 such that : 3

 $C_1 \parallel x \parallel_1 \le \parallel x \parallel_2 \le C_2 \parallel x \parallel_1 \forall x \in X.$

 (b) Prove that a normed linear space X is a Banach space if and only if every absolutely convergent series of elements of X is convergent in X.

- (c) Define the spectrum of a bounded linear operator on a normed space X. Let $X = C_{00}$ and $A: X \rightarrow X$ be given by $Ax(1) = 0, Ax(i) = x(i-1), i = 1, 2, \dots$. Prove that $\sigma(A)$ is non-compact. 3
- 3. (a) State open mapping theorem. Show that the theorem may not hold if one of the normed linear space are not Banach. 5
 - (b) Prove that the dual of a Hilbert space is also a Hilbert space. 5
- 4. (a) Given $n \in \mathbb{N}$, find a bounded linear functional f on l^2 such that $f(e_n) = n$ and || f || = n. 3
 - (b) State the Hahn-Banach separation theorem. 3
 - (c) Let X be a normed space over **C**. f is a complex linear functional on X. Prove that Ref is a real linear functional on X. Prove that $|| \operatorname{Ref} || = || f ||$.
- 5. (a) Prove that the space l^p with the *p*-norm is an inner product space if and only if p = 2.

3

(b) Is the Riesz-Fischer theorem true in $(C_{00}, \|\cdot\|_2)$? Justify your answer. 3

P. T. O.

- (c) Give *three* examples of self-adjoint, normal and unitary operators, respectively, on a Hilbert space, where the normal operator is neither self-adjoint nor unitary.
- 6. (a) Let E_1 and E_2 be subsets of a normed linear space X. Show that $E_1 + E_2$ is compact if E_1 and E_2 are compact. Is $E_1 + E_2$ closed if E_1 is compact and E_2 is closed? Justify. 5
 - (b) Prove that if A is a positive operator on a Hilbert space H, then I + A is invertible in BL (H).
 - (c) Give an example of a linear map which is not continuous but whose graph is closed. 2

MMT-006