M. Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) [M. Sc. (MACS)]

Term-End Examination
June, 2023
MMT-003 : ALGEBRA

Time : 2 Hours
Maximum Marks : 50
Note : Question No. 1 is compulsory. Attempt any four questions from Question No. 2 to 6. Calculators are not allowed. Show all the steps involved. Do your rough work at the bottom or at the side.

1. Which of the following statements are true and which are false? Give reasons for your answers :

$$
5 \times 2=10
$$

(i) A_{6} has 6 distinct normal subgroups.
P. T. 0.
(ii) Every finite extension of $\mathrm{K}=\mathrm{Q}\left(2^{\frac{1}{3}}, i\right)$ is separable over K.
(iii) $f: \mathrm{GL}_{1}(\mathbf{R}) \rightarrow \mathrm{GL}_{1}(\mathbf{R}): f(x)=2 x$ is a linear representation.
(iv) If I and J are ideals of a commutative ring R, then $I+J=R$.
(v) $\mathrm{U}(\mathrm{K}[x])=\mathrm{K}$, where K is a field.
2. (a) Is 80 a square modulo 73 ? Give reasons for your answer.
(b) Define a normal subgroup of a group. Give an example, with justification, of a normal subgroup. 2
(c) Define the nil radical of a ring. Find the radical \mathbf{Z}_{9}. 2
(d) Define the characteristic of a field. Is it possible to have a field of characteristic 3 with more than 3 elements ? Justify your answer.
(e) Define a special linear group over \mathbf{R}. Give a non-trivial element of such a group, with justification.
3. (a) Let G be a group of order 21 and let G act on a set S, which has 23 elements. Suppose G does not fix any element of S . What are the possible cardinalities of the orbits under the action of G on S ? Justify your answer.
(b) Define the splitting field of a polynomial over a field. Let K be the splitting field of $x^{4}-7 \in \mathbf{Q}[x]$. Determine $[\mathrm{K}: \mathbf{Q}]$.
4. (a) Show that ($\mathbf{N},{ }^{*}$) natural numbers under multiplication is not a free semi-group. 3
(b) Give an example, with justification, of a cubic polynomial over \mathbf{Q} with the degree of its splitting field over \mathbf{Q} being less than 3.
(c) Apply the extended g.c.d. algorithm to write the g.c.d. of 17 and 7 as an integer linear combination of 17 and 7 .
(d) Define the content of a polynomial over a PID. Give an example, with justification, of a quadratic polynomial over \mathbf{Z} whose content is 2 . 2
P. T. O.
5. (a) List all the non-isomorphic classes of abelian groups of order 900 . 4
(b) Let K and L be finite extensions of \mathbf{Q} and \mathbf{C} such that $[\mathrm{K}: \mathbf{Q}]=m,[\mathrm{~L}: \mathbf{Q}]=n$ and $(m, n)=1$. Show that $[\mathrm{LK}: \mathbf{Q}]=m n$. 4
(c) Let G be a group and $\mathrm{N} \Delta \mathrm{G}$. Let $x \in \mathrm{~N}$. Find $\mathrm{C}_{x} \backslash \mathrm{~N}$.2
6. (a) Check whether or not a group of order 70 is simple.
(b) Describe the special orthogonal group in GL ($2, \mathbf{R}$). Show that it is isomorphic to the unit circle (group under multiplication). Also show that this group is conjugate to a diagonal group in GL (2, C).7

