BACHELOR'S DEGREE PROGRAMME (BDP)

Term-End Examination June, 2023

MTE-11 : PROBABILITY AND STATISTICS

Time : 2 Hours
Maximum Marks : 50
Note: (i) Question No. 7 is compulsory.
(ii) Attempt any four questions from Question Nos. 1 to 6.
(iii) Symbols have their usual meanings.
(iv) Use of calculator is not allowed.

1. (a) The life of the bulbs produced by two companies A and B are given below :

Length of Life (in hundred hours)	Company A (No. of bulbs)	Company B (No. of bulbs)
$5-7$	3	3
$7-9$	8	15
$9-11$	25	20
$11-13$	10	10
$13-15$	4	2
Total	50	50

P. T. 0.

Which company's bulbs have more average life from the point of view of length of life?
(b) An urn contains 2 red, 3 black and 5 white balls. If 3 balls are drawn at random without replacement, find the probabilities that:
(i) all 3 balls are black.
(ii) two balls are red and one ball is black.
(c) If random variable X has binomial distribution with mean 4 and variance 1 , find $\mathrm{P}[\mathrm{X} \leq 1]$.
2. (a) If a random variable X has mean 4 and variance 9 and another independent random variable Y has mean -2 and variance 5 , then find :
(i) $\mathrm{E}(2 \mathrm{X}+\mathrm{Y}-5)$
(ii) $\operatorname{Var}(2 \mathrm{X}+\mathrm{Y}-5)$
(b) If a random variable has the following density function :

$$
f(x)=\left\{\begin{array}{cc}
2 e^{-2 x} ; & x \geq 0 \\
0 ; & x<0
\end{array}\right.
$$

then find :
(i) mean (μ) and variance (σ^{2}) of X ,
(ii) $\mathrm{P}[|\mathrm{X}-\mu| \geq 1]$
(iii) Use Chebyshev's inequality to obtain an upper bound of $\mathrm{P}[|X-\mu| \geq 1]$ and compare with the result obtained in part (ii) (given $e^{-3}=0.0498$).
3. (a) Let $X_{1}, X_{2}, \ldots . . X_{n}$ be a random sample from a Poisson distribution with parameter λ. Find an estimator of λ using :
(i) the method of moments
(ii) the method of maximum likelihood.
(b) If the variance of a Poisson distribution is

6 , find the probability $\mathrm{P}(\mathrm{X} \geq 2)$. 2
(c) State the conditions under which binomial distribution tends to Poisson distribution. 2
4. (a) A preparation of insulin was being studied to determine its effect on reducing the blood-sugar level in rats. Five rats were injected with different dosages. Reductions
P. T. 0.
in their blood-sugar levels are given in the following table :

Dosage (\boldsymbol{x})	Reduction in blood sugar (y)
20	30
25	25
25	40
30	35
40	50

(i) Identify the dependent and independent variables.
(ii) Find the regression line of y on x.
(b) The probability that a candidate will pass an examination is 0.70 . Find the probability that she will pass the examination at the third attempt. 2
(c) If 3 books are selected at random from a shelf containing 5 novels, 3 books of poems and a dictionary, what is the probability that 2 novels and 1 book of poems are selected?2
5. (a) If the marks of students in a subject are normally distributed with mean 79 and variance 25 , then find how many students in a class of 200 receive marks :
(i) between 75 and 82 ?
(ii) more than 82 ?
[Given $\phi(0.6)=0.7257, \phi(0.8)=0.7881$]
(b) Suppose X is a gamma random variable with parameters α and λ. If $E(X)=2$ and $\operatorname{Var}(X)=4$, then find α and λ.
(c) For the following joint probability distribution of (X,Y) :

1	1	2	3
1	$1 / 20$	$1 / 10$	$1 / 10$
2	$1 / 10$	$1 / 10$	$1 / 10$
3	$1 / 10$	$1 / 10$	$1 / 20$
4		$1 / 20$	

(i) Find marginal distribution of X .
(ii) Find $\mathrm{P}[\mathrm{Y}=2 \mid \mathrm{X}=4]$.
(iii) Examine whether two events $\mathrm{X}=4$ and $Y=2$ are independent.
P. T. O.
6. (a) Let X_{1} be a random sample of size 1 from a population with p.d.f. :

$$
f(x, \theta)=\frac{1}{\theta} \exp \left(-\frac{x}{\theta}\right) ; x \geq 0, \theta>0
$$

Obtain best critical region of size α for testing $\mathrm{H}_{0}: \theta=\theta_{0}$ against $\mathrm{H}_{1}: \theta=\theta_{1}>\theta_{0}$.
(b) The probability of hitting a target in any attempt is 0.6 . Find the probability that it would be hit on the third attempt? 4
7. Which of the following statements are true or false ? Give a short proof or a counter example in support of your answer : $5 \times 2=10$
(i) For two independent events A and B , if

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~A})=0.2 \text { and } \mathrm{P}(\mathrm{~B})=0.4, \text { then } \\
& \mathrm{P}(\mathrm{~A} \cap \mathrm{~B})=0.6
\end{aligned}
$$

(ii) Frequency density of a class for any distribution is the ratio of total frequency to class width.
(iii) If correlation coefficient between X and Y is 0.62 , then correlation coefficient between $5+6 \mathrm{X}$ and $7-3 \mathrm{Y}$ will be 0.62 .
(iv) The sufficient conditions for an estimator $\left(\mathrm{T}_{n}\right)$ to be a consistent estimator of θ are $\mathrm{E}\left(\mathrm{T}_{n}\right) \rightarrow \theta$ as $n \rightarrow \infty$ and $\operatorname{Var}\left(\mathrm{T}_{n}\right) \rightarrow \infty$ and $n \rightarrow \infty$.
(v) The mean deviation is least when deviations are taken about the mean.
P. T. 0.

MTE-11

स्नातक उपाधि कार्यक्रम (बी.डी.पी.)

सत्रांत परीक्षा

जून, 2023

एम.टी.ई.-11 : प्रायिकता और सांख्यिकी

समय : 2 घण्टे
अधिकतम अंक : 50

नोट : (i) प्र. सं. 7 अनिवार्य है।
(ii) प्रश्न संख्या 1 से 6 तक कोई चार प्रश्न कीजिए।
(iii) प्रतीकों के अर्थ सामान्य हैं।
(iv) कैलकुलेटरों का प्रयोग करने की अनुमति नहीं है।

1. (क)दो कम्पनियों A और B द्वारा निमित बल्बों के जीवनकाल के आँकड़े अग्रलिखित हैं :

जीवनकाल की लंबाई (सैकड़ों घंटे में)	कम्पनी A (बल्ब की संख्या)	कम्पनी \mathbf{B} (बल्ब की संख्या)
$5 — 7$	3	3
$7 — 9$	8	15
$9 — 11$	25	20
$11 — 13$	10	10
$13 — 15$	4	50
कुल	50	50
जीवनकाल की लंबाई को ध्यान में रखकर ज्ञात		

(ख) एक थैले में 2 लाल, 3 काली और 5 सफेद गेंदं हैं। यदि थैले से 3 गेंदे बिना प्रतिस्थापन के निकाली जाती हैं तो निम्नलिखित प्रायिकता ज्ञात कीजिए :
(i) सभी 3 गेंदें काली हैं।
(ii) दो गेंदं लाल और एक गेंद काली है।
(ग) यदि एक यादृच्छिक चर X द्विपद बंटन में ह जिसका माध्य 4 और प्रसरण 1 है, तो $\mathrm{P}[\mathrm{X} \leq 1]$ ज्ञात कीजिए।
P. T. 0.
2. (क) यदि एक यादृच्छिक चर X का माध्य 4 और प्रसरण 9 है तथा एक दूसरे स्वतंत्र यादृच्छिक चर Y का माध्य - 2 और प्रसरण 5 है तो निम्नलिखित ज्ञात कीजिए :
(i) $\mathrm{E}(2 \mathrm{X}+\mathrm{Y}-5)$
(ii) $\operatorname{Var}(2 \mathrm{X}+\mathrm{Y}-5)$
(ख) यदि एक यादृच्छिक चर का घनत्व फलन निम्नलिखित है :

$$
f(x)=\left\{\begin{array}{cl}
2 e^{-2 x} ; & x \geq 0 \\
0 ; & x<0
\end{array}\right.
$$

तो निम्नलिखित ज्ञात कीजिए :
(i) X के माध्य (μ) और प्रसरण $\left(\sigma^{2}\right)$
(ii) $P[|X-\mu| \geq 1]$
(iii) शेबीशेव असमिका का प्रयोग करके $\mathrm{P}[|\mathrm{X}-\mu| \geq 1]$ का उपरि परिबंध निकालिए तथा भाग (ii) से प्राप्त परिणाम से उसकी तुलना कीजिए। (दिया है : $e^{-3}=0.0498$)
3. (क)मान लीजिए कि $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots . \mathrm{X}_{n}$ एक λ प्राचल वाले प्वांसा बंटन से लिया गया यादृच्छिक प्रतिदर्श है। निम्नलिखित का प्रयोग करके λ के आकलक ज्ञात कीजिए :
(i) आघूर्ण विधि
(ii) अधिकतम संभावित विधि
(ख) यदि एक प्वांसा बंटन का प्रसरण 6 है, तो प्रायिकता $\mathrm{P}(\mathrm{X} \geq 2)$ ज्ञात कीजिए। 2
(ग)वे प्रतिबंध लिखिए जिनसे द्विपद बंटन, प्वांसा बंटन की ओर बढ़ता है।
4. (क)इंसुलिन की एक तैयार सामग्री का अध्ययन चूहों के रक्त शुगर में इसके प्रभाव को कम करने के लिए किया गया। पाँच चूहों को इसकी अलग-अलग मात्रा दी गयी। उनके रक्त शुगर के स्तर में हुई कमी अग्रलिखित तालिका में दी गयी है :

मात्रा (\boldsymbol{x})	रक्त शुगर में कमी (\boldsymbol{y})
20	30
25	25
25	40
30	35
40	50

(i) स्वतंत्र और अस्वतंत्र चर पहचानिए।
(ii) x पर y की समाश्रयण रेखा ज्ञात कीजिए।
(ख)एक अभ्यर्थी के एक परीक्षा में सफल होने की प्रायिकता 0.70 है। वह प्रायिकता क्या होगी कि अभ्यर्थी परीक्षा में तीसरी बार में पास होगी? 2
(ग) एक अलमारी, जिसमें 5 नॉवल, 3 कविता की किताबें और एक शब्दकोश है, से 3 किताबें यादृच्छया चुनी गयीं। वह प्रायिकता क्या है कि 2 नॉवल और एक कविता की किताब चुनी गयी?
5. (क) यदि कुछ विद्यार्थियों के अंक प्रासामान्य बंटित हं जिनका माध्य 79 और प्रसरण 25 है, तो

200 विद्यार्थियों की एक कक्षा में कितने विद्यार्थियों के अंक :
(i) 75 और 82 के बीच हैं ?
(ii) 82 से अधिक हैं ?
[दिया है : $\phi(0.6)=0.7257, \phi(0.8)=0.7881$]
(ख) मान लीजिए कि X एक α और λ प्राचल वाला गामा यादृच्छिक चर है। यदि $\mathrm{E}(\mathrm{X})=2$ और $\operatorname{Var}(\mathrm{X})=4$ है तो α और λ ज्ञात कीजिए। 2 (ग) (X, Y) का संयुक्त प्रायिकता बंटन निम्नलिखित है :

1	1	2	3
1	$1 / 20$	$1 / 10$	$1 / 10$
2	$1 / 20$	$1 / 10$	$1 / 10$
3	$1 / 10$	$1 / 10$	$1 / 20$
4	$1 / 10$	$1 / 10$	$1 / 20$

(i) X का सीमांत बंटन ज्ञात कीजिए।
(ii) $\mathrm{P}[\mathrm{Y}=2 \mid \mathrm{X}=4]$ ज्ञात कीजिए।
P. T. 0.
(iii) जाँच कीजिए कि दो घटनाएँ $\mathrm{X}=4$ और $\mathrm{Y}=2$ स्वतंत्र हैं।
6. (क) $f(x, \theta)=\frac{1}{\theta} \exp \left(-\frac{x}{\theta}\right) ; x \geq 0, \theta>0$ p.d.f. की एक समष्टि से आमाप 1 का एक यादृच्छिक प्रतिदर्श X लीजिए। $\mathrm{H}_{0}: \theta=\theta_{1}$ विरुद्ध $\mathrm{H}_{1}: \theta=\theta_{1}>\theta_{0}$ के परीक्षण के लिए आकार α का उच्च क्रांतिक प्रदेश प्राप्त कीजिए।
(ख) एक लक्ष्य को किसी भी प्रयास में भेदने की प्रायिकता 0.6 है। तीसरी बार प्रयास करने पर लक्ष्य को भेदने की प्रायिकता क्या होगी ? 4
7. निम्नलिखित कथनों में से कौन-से कथन सत्य और कौन-से असत्य हैं ? अपने उत्तर के पक्ष में एक संक्षिप्त उपपत्ति या प्रतिउदाहरण दीजिए : $5 \times 2=10$
(i) दो स्वतंत्र घटनाओं A और B के लिए, यदि

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~A})=0.2 \text { और } \mathrm{P}(\mathrm{~B})=0.4 \text { है, तो } \\
& \mathrm{P}(\mathrm{~A} \cap \mathrm{~B})=0.6 \text { होगा। }
\end{aligned}
$$

(ii) किसी बंटन के लिए एक वर्ग का बारंबारता घनत्व कुल बारंबारता का वर्ग की चौड़ाई के साथ अनुपात होता है।
(iii) यदि X और Y के बीच सहसम्बन्ध गुणांक 0.62 है तो $5+6 \mathrm{X}$ और $7-3 \mathrm{Y}$ के बीच सहसम्बन्ध गुणांक 0.62 होगा।
(iv) एक आकलक $\left(\mathrm{T}_{n}\right)$ के संगत आकलक (θ) होने का पर्याप्त प्रतिबंध $\mathrm{E}\left(\mathrm{T}_{n}\right) \rightarrow \theta$ जब $n \rightarrow \infty$ और $\operatorname{Var}\left(\mathrm{T}_{n}\right) \rightarrow \infty$ जब $n \rightarrow \infty$ है।
(v) माध्य विचलन न्यूनतम होता है जबकि विचलन माध्य के परितः लिया जाता है।

