BACHELOR'S DEGREE PROGRAMME

 (BDP)
Term-End Examination June, 2023
 (Elective Course : Mathematics) MTE-09 : REAL ANALYSIS

Time : 2 Hours
Maximum Marks : 50
Weightage : 70\%
Note :Attempt five questions in all. Q. No. 1 is compulsory. Answer any four questions from Question Nos. 2 to 7. Use of calculators is not allowed.

1. Are the following statements true or false ? Give reasons for your answers : 2 each
(a) -4 is not a limit point of the interval] - 5, 2[.
(b) Every subsequence of the sequences $\left(\frac{1}{n^{3 / 2}}\right)$ is convergent.
(c) The sum of two real discontinuous functions is always discontinuous.
(d) The real function f defined by $f(x)=4|x|-5 x^{2}$ is differentiable at $x=-1$.
P. T. 0.
(e) The greatest integer function is integrable on the interval] $5,6[$.
2. (a) Write the inequality, $8<2 x+1<12$, in the modulus form : 2
(b) Evaluate :

$$
\lim _{x \rightarrow 0} \frac{(1-\cos x)^{2}}{e^{x^{3}}-1}
$$

(c) State the second mean value theorem of inegrability. Verify it for the functions f and g defined on $[2,3]$ by $f(x)=2 x$ and $g(x)=x^{2}$.
3. (a) What are the sufficient conditions for a set to have a limit point ? Check whether or not the following sets have any limit point :
(i)] 2.4, 4.2 [
(ii) The set of even integer between 50 and 5000.
(b) Examine whether the equation, $x^{3}-15 x+16=0$ has a real root in the interval] - 3,3 [.
(c) (i) 'The sequence $\left(s_{n}\right)$, where :

$$
s_{n}=1+\frac{1}{2}+\frac{1}{3}+\ldots \ldots \ldots .+\frac{1}{n}
$$

is Cauchy, prove or disprove.
(ii) Show that:

$$
\sum_{n=0}^{\infty} \frac{1}{(n+\beta)(n+\beta+1)}=\frac{1}{\beta}(\beta>0) .
$$

4. (a) Check whether the set $\left\{\frac{1}{4^{n}}: n \in \mathbf{Z}\right\}$ is bounded or not. 2
(b) Prove that : 4

$$
\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\ldots \ldots+\frac{(-1)^{n} x^{2 n}}{(2 n)!}+\ldots \ldots
$$

(c) Let a function $f: \mathbf{R} \rightarrow \mathbf{R}$ be defined as:

$$
f(x)=\left\{\begin{aligned}
-3, & \text { if } x \in \mathbf{R} / \mathbf{Q} \\
3, & \text { if } \quad x \in \mathbf{Q}
\end{aligned}\right.
$$

Show that f is discontinuous everywhere. 4
5. (a) State Weiestrass M-test and apply it to show that $\sum_{n=1}^{\infty} \frac{60}{x^{6}+n^{6}}$ converges uniformly for all $x \in \mathbf{R}$.
(b) Identify the intervals in which the function of on \mathbf{R} defined by :

$$
f(x)=x^{3}-2 x^{2}+x-12
$$

is increasing or decreasing.
(c) If a sequence $\left(a_{n}\right)$ convergens to ' a ', then prove that the sequence $\left(\left|a_{n}\right|\right)$ converges to $|a|$. Is its converse true ? Justify your answer.
6. (a) Represent the number $3-\sqrt{5}$ on the real line.
(b) Check whether or not the sequence $\left(\frac{4 n^{2}-3 n}{2 n^{2}+5 n}\right)$ converges.
P. T. O.
(c) Let $f:[0,1] \rightarrow \mathbf{R}$ be a function defined by $f(x)=3 x . \quad$ Let $\quad \mathrm{P}_{1}=\left\{0, \frac{1}{3}, \frac{2}{3}, 1\right\} \quad$ and $\mathrm{P}_{2}=\left\{0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1\right\}$ be two partitions of the internval $\{0,1)$. Show that $\mathrm{L}\left(\mathrm{P}_{2}, f\right) \leq \mathrm{U}\left(\mathrm{P}_{1}, f\right)$.
(d) Evaluate :

$$
\lim _{x \rightarrow \infty}\left(\frac{x+5}{x-3}\right)^{x}
$$

7. (a) Check whether or not \mathbf{N} (the set of natural numbers) and \mathbf{Z} (the set of integers) are equivalent.
(b) Evaluate :

$$
\lim _{n \rightarrow \infty} \sum_{r=1}^{n} \frac{n^{2}}{(3 n+r)^{3}}
$$

(c) Check whether or not the following functions are continuous at $x=0$. Also find the nature of discontinuity at that point, if it exists :
(i) $f(x)=\left\{\begin{array}{cl}\frac{\sqrt{3+x}-\sqrt{3-x}}{x}, & x \neq 0 \\ -\frac{1}{\sqrt{3}}, & x=0\end{array}\right.$
(ii) $f(x)=\left\{\begin{array}{cc}2 x^{2}-3 x+1, & x>0 \\ -\left(3 x^{2}-2 x+1\right), & x \leq 0\end{array}\right.$

MTE-09

स्नातक उपाधि कार्यक्रम (बी. डी. पी.)
सत्रांत परीक्षा
जून, 2023
(ऐच्छिक पाठ्यक्रम : गणित)
एम.टी.ई. : वास्तविक विश्लेषण
समय : 2 घण्टे
अधिकतम अंक : 50
भारिता : 70\%
नोट : कुल पाँच प्रश्नों के उत्तर दीजिए। प्र. सं. 1 अनिवार्य है। प्र. सं. 2 से 7 तक किन्हीं चार प्रश्नों के उत्तर दीजिए। कैल्कुलेटरों के प्रयोग की अनुमति नहीं है।

1. क्या निम्नलिखित कथन सत्य हैं या असत्य ? अपने उत्तरों के कारण दीजिए : प्रत्येक 2
(क) -4 अंतराल $]-5,2[$ का सीमा बिन्दु नहीं है।
(ख) अनुक्रम $\left(\frac{1}{n^{3 / 2}}\right)$ का प्रत्येक उपअनुक्रम अभिसारी है।
(ग) दो असंतत वास्तविक मान फलनों का योगफल भी हमेशा असंतत होता है।
P. T. O.
(घ) $f(x)=4|x|-5 x^{2}$ द्वारा परिभाषित वास्तविक मान फलन $f, x=-1$ पर अवकलनीय है।
(ङ) महत्तम पूर्णांक फलन अंतराल $] 5,6[$ पर समाकलनीय है।
2. (क) असमिका $8<2 x+1<12$ को मापांक रूप में लिखिए। 2
(ख) $\lim _{x \rightarrow 0} \frac{(1-\cos x)^{2}}{e^{x^{3}}-1}$ का मान ज्ञात कीजिए। 3
(ग) समाकलनोयता की द्वितीय मध्यमान प्रमेय का कथन दीजिए। इसे $[2,3]$ पर $f(x)=2 x$ और $g(x)=x^{2}$ द्वारा परिभाषित फलनों f और g के लिए सत्यापित कीजिए।
3. (क) किसी समुच्चय का कोई सीमा बिन्दु होने के लिए पर्याप्त प्रतिबंध क्या हैं ? जाँच कीजिए कि निम्नलिखित समुच्चयों के कोई सीमा बिन्दु हैं या नहीं :
(i)] 2.4, 4.2 [
(ii) 50 और 5000 के बीच के सभी सम पूर्णांकों का समुच्चय
(ख) जाँच कीजिए कि समीकरण $x^{3}-15 x+16 x=0$ का अंतराल] $-3,3$ [में कोई वास्तविक मूल है या नहीं।
(ग) (i) अनुक्रम $\left(s_{n}\right)$, जहाँ :

$$
s_{n}=1+\frac{1}{2}+\frac{1}{3}+\ldots \ldots \ldots . .+\frac{1}{n}
$$

कांशी है। सिद्ध या असिद्ध कीजिए।
(ii) दिखाइए कि :

$$
\sum_{n=0}^{\infty} \frac{1}{(n+\beta)(n+\beta+1)}=\frac{1}{\beta}(\beta>0)
$$

4. (क) जाँच कीजिए कि समुच्चय $\left\{\frac{1}{4^{n}}: n \in \mathbf{Z}\right\}$ परिबद्ध है या नहीं।
(ख) सिद्ध कीजिए :

$$
\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\ldots \ldots .+\frac{(-1)^{n} x^{2 n}}{(2 n)!}+\ldots \ldots . .
$$

(ग) मान लीजिए एक फलन $f: \mathbf{R} \rightarrow \mathbf{R}$ निम्न प्रकार परिभाषित है :

$$
f(x)=\left\{\begin{aligned}
-3, & \text { यदि } x \in \mathbf{R} / \mathbf{Q} \\
3, & \text { यदि } x \in \mathbf{Q}
\end{aligned}\right.
$$

दिखाइए कि f सर्वत्र असंतत है।
5. (क) वीयरस्ट्रास M -परीक्षण का कथन दीजिए और इसका प्रयोग करके दिखाइए कि $\sum_{n=1}^{\infty} \frac{60}{x^{6}+n^{6}}$ सभी $x \in \mathbf{R}$ के लिए एकसमानतः अभिसरित होती है।
(ख) उन अंतरालों को पहचानिए, जहाँ $f(x)=x^{3}-2 x^{2}+x-12 \quad$ द्वारा $\quad \mathbf{R} \quad$ पर परिभाषित फलन f वर्धमान या ह्रासमान है। 3
(ग) यदि कोई अनुक्रम $\left(a_{n}\right), a$ पर अभिसरित होता है, तो सिद्ध कीजिए कि अनुक्रम $\left(\left|a_{n}\right|\right),|a|$ पर अभिसरित होता है। क्या इसका विलोम सत्य है ? अपने उत्तर की पुष्टि कीजिए।
6. (क) संख्या $3-\sqrt{5}$ को वास्तविक रेखा पर निरूपित कीजिए।
(ख) जाँच कीजिए कि अनुक्रम $\left(\frac{4 n^{2}-3 n}{2 n^{2}+5 n}\right)$ अभिसारी है या नहीं। 2
(ग) मान लीजिए $f:[0,1] \rightarrow \mathbf{R}, f(x)=3 x$ द्वारा परिभाषित एक फलन है। मान लीजिए :
$\mathrm{P}_{1}=\left\{0, \frac{1}{3}, \frac{2}{3}, 1\right\}$ और $\mathrm{P}_{2}=\left\{0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1\right\}$ अंतराल $[0,1]$ के दो विभाजन हैं। दिखाइए कि $\mathrm{L}\left(\mathrm{P}_{2}, f\right) \leq \mathrm{U}\left(\mathrm{P}_{1}, f\right)$ है।
(घ) $\lim _{x \rightarrow \infty}\left(\frac{x+5}{x-3}\right)^{x}$ का मान ज्ञात कीजिए।
7. (क) जाँच कीजिए कि प्राकृतिक संख्याओं का समुच्चय \mathbf{N} और पूर्णांकों का समुच्चय \mathbf{Z} तुल्य हैं या नहीं।
(ख) $\lim _{n \rightarrow \infty} \sum_{r=1}^{n} \frac{n^{2}}{(3 n+r)^{3}}$ का मान ज्ञात कीजिए। 3
(ग) जाँच कीजिए कि निम्नलिखित फलन $x=0$ पर संतत हैं या नहीं। साथ ही, यदि कोई फलन असंतत है, तो इस बिन्दु पर असांतत्य की प्रकृति ज्ञात कीजिए :
(i) $f(x)=\left\{\begin{array}{cl}\frac{\sqrt{3+x}-\sqrt{3-x}}{x}, & x \neq 0 \\ -\frac{1}{\sqrt{3}}, & x=0\end{array}\right.$
(ii) $f(x)=\left\{\begin{array}{cc}2 x^{2}-3 x+1, & x>0 \\ -\left(3 x^{2}-2 x+1\right), & x \leq 0\end{array}\right.$

