BACHELOR'S DEGREE PROGRAMME (BDP)

Term-End Examination
June, 2023
MTE-06 : ABSTRACT ALGEBRA

Time : 2 Hours
Maximum Marks : 50
Note: (i) Question No. 7 is compulsory.
(ii) Answer any four questions from the rest of the questions.
(iii) Use of calculator is not allowed.
(iv) Do the rough work at the side of the page or at the bottom.

1. (a) Suppose G is a non-abelian group and $a, b \in \mathrm{G}$. Show by the principle of mathematical induction that $\left(a b a^{-1}\right)^{n}=a b^{n} a^{-1} \forall n \in \mathbf{N}$. 3
(b) Suppose $\quad f(x)=2 x^{2}+1$, $g(x)=x^{4}+x^{2}+x+2$ in $\mathbf{Z}_{3}[x]$. Find the quotient and the remainder when $g(x)$ is divided by $f(x)$ in $\mathbf{Z}_{3}[x]$.
(c) Check if the following polynomial is irreducible:

$$
x^{6}+6 x^{4}+12 x+12 \text { in } \mathbf{Z}[x] .
$$

(d) Define the order of an element in a finite group. Find the order of $\overline{3}$ in \mathbf{Z}_{11}.
2. (a) Define homomorphism between rings. Check whether the $\operatorname{map} f: \mathbf{Z} \rightarrow \mathbf{M}_{2}(\mathbf{Z})$ defined by $f(n)=\left(\begin{array}{ll}n & 0 \\ 0 & 0\end{array}\right)$ is a ring homomorphism.
(b) Define a normal subgroup. Check whether $\{1,(13)\}$ is a normal subgroup of h.
(c) Give an example of a commutative ring with unity R and elements $a, b \in \mathrm{R}, b \neq 0$ such that $a b=b$ and $a \neq 1$.
(d) Express the permutation :

$$
\alpha=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
2 & 3 & 1 & 5 & 6 & 4
\end{array}\right)
$$

first as a product of disjoint cycles and then as a product of transpositions. What is the signature of α ?
3. (a) Define a binary operation * a on \mathbf{Z} by $a * b=a+b+2 a b$. Check if * is associative. Find the identify element under *. Which element are invertible
under * ? Find the inverse of each invertible element under *.
(b) Let \mathbf{C}^{2} be the ring under componentwise addition and multiplication. Find an ideal I of \mathbf{C}^{2} that is isomorphic to \mathbf{C} as a ring. Check whether $\frac{\mathbf{C}^{2}}{\mathrm{I}} \simeq \mathbf{C}$ as rings. Justify your answer.
4. (a) Let
$\mathbf{R}=\mathbf{Z}+\sqrt{2} \mathbf{Z}$
and $\mathbf{S}=\left\{\left.\left[\begin{array}{cc}a & 2 b \\ b & a\end{array}\right] \right\rvert\, a, b \in \mathbf{Z}\right\} . \quad$ Show that $\theta: \mathrm{R} \rightarrow \mathrm{S}$ defined by $\theta(a+\sqrt{2} b)=\left[\begin{array}{cc}a & 2 b \\ b & a\end{array}\right]$ is an isomorphism of rings.
(b) Explain, how \mathbf{Q} / \mathbf{Z} is a subgroup of \mathbf{R} / \mathbf{Z}. Show that $\mathbf{Z}+a \in \mathbf{R} / \mathbf{Z}$ has finite order if and only if $a \in \mathbf{Q}$.
5. (a) Let G be a group of order 54 . How many Sylow 3 -subgroups, Sylow 2 -subgroups and sylow 5 -subgroups can G have ? Give reasons for your answers.
(b) Define a relation R on the set of integers \mathbf{Z} by $a \mathrm{R} b$ if 3 divides $a-b$. Show that R is an equivalence relation. Also find all distinct equivalence classes.
6. (a) Show that the ring $\mathbf{Q}[x]$ has got infinitely many maximal ideals.
(b) Prove that $\mathbf{Z}[\sqrt{-3}]$ is not a UFD by giving two different factorisations of 4 as product of irreducible elements in $\mathbf{Z}[\sqrt{-3}]$. 4
(c) Prove that any group of prime order is cyclic.
7. Which of the following statements are true and which are false ? Justify your answers with a short proof or a counter-example : $\quad 5 \times 2=10$
(a) If $f: \mathbf{Z} \rightarrow \mathbf{Z}$ is a function and $\mathrm{A} \subset \mathbf{Z}$, then $f^{-1}(f(\mathrm{~A})) \subset \mathrm{A}$.
(b) There is a non-trivial group homomorphism from \mathbf{Z}_{8} to \mathbf{Z}.
(c) The group S_{7} has an element of order 11.
(d) There is a field that has got exactly 6 elements.
(e) Union of two subrings of a ring is a subring of the ring.

MTE-06

स्नातक उपाधि कार्यक्रम (बी. डी. पी.)

सत्रांत परीक्षा

जून, 2023
एम.टी.ई.-06 : अमूर्त बीजगणित
समय : 2 घण्टे
अधिकतम अंक : 50
नोट : (i) प्रश्न सं. 7 करना अनिवार्य है।
(ii) प्रश्न सं 1 से 6 तक किन्हीं चार प्रश्नों के उत्तर दीजिए।
(iii) कैल्कुलेटर के प्रयोग करने की अनुमति नहों है।
(iv) रफ कार्य पृष्ठ के किनारे या नीचे कीजिए।

1. (क) मान लीजिए कि G एक अन्-आबेली समूह है और $a, b \in \mathrm{G}$ । आगमन विधि द्वारा सिद्ध कीजिए कि :

$$
\left(a b a^{-1}\right)^{n}=a b^{n} a^{-1} \quad \forall n \in \mathbf{N}
$$

(ख) मान लीजिए कि $f(x)=2 x^{2}+1$, $g(x)=x^{4}+x^{2}+x+2, \mathbf{Z}_{3}[x]$ में हैं। $\mathbf{Z}_{3}[x]$ में $g(x)$ को $f(x)$ से विभाजन करने पर प्राप्त भागफल और शेषफल निकालिए।
(ग) जाँच कीजिए कि निम्नलिखित बहुपद अखण्डनीय है :

$$
x^{6}+6 x^{4}+12 x+12 \in \mathbf{Z}[x]
$$

(घ) एक परिमित समूह में एक अवयव की कोटि परिभाषित कीजिए। \mathbf{Z}_{11} में $\overline{3}$ का कोटि निकालिए।
2. (क) वलयों के बीच की समाकारिता परिभाषित कीजिए। जाँच कीजिए कि $f(n)=\left(\begin{array}{ll}n & 0 \\ 0 & 0\end{array}\right)$ द्वारा परिभाषित फलन $f: \mathbf{Z} \rightarrow \mathbf{M}_{2}(\mathbf{Z})$ एक वलय समाकारिता है।2
(ख) प्रसामान्य उपसमूह को परिभाषित कीजिए। जाँच कीजिए कि $\left\{1,\left(\begin{array}{ll}1 & 3\end{array}\right)\right\}, h$ की प्रसामान्य उपसमूह है या नहीं।
(ग) उदाहरण के तौर पर एक क्रमविनिमेय वलय R और दो अवयव $a, b \in \mathrm{R}, b \neq 0$, दीजिए जिसके लिए $a b=b$ हो और $a \neq 1$ हो।
(घ) क्रमचय $\alpha=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 1 & 5 & 6 & 4\end{array}\right)$ को पहले असंयुक्त चक्रों के गुणनफल के रूप में और उसके बाद पक्षान्तरणों के गुणनफलन के रूप में व्यक्त कीजिए। α का चिह्नक क्या है ? 3
3. (क) \mathbf{Z} पर $a * b=a+b+2 a b$ द्वारा एक द्वि-आधारी संक्रिया परिभाषित कीजिए। जाँच कीजिए कि * साहचर्य है। * के सापेक्ष तत्समक अवयव ज्ञात कीजिए। * के सापेक्ष कौन-से अवयवों का प्रतिलोम है ? * के सापेक्ष जो भी अवयव का प्रतिलोम है उसका प्रतिलोम निकालिए।
(ख) C^{2} लीजिए जो संगत घटकों के योग और गुणन के सापेक्ष वलय है। \mathbf{C}^{2} की एक ऐसी गुणजावली I निकालिए जो वलय क तौर पर \mathbf{C} से तुल्याकारी है। जाँच कीजिए वलय क तार पर $\frac{\mathrm{C}^{2}}{\mathrm{I}} \simeq \mathrm{C}$ । अपने उत्तर की पुष्टि कीजिए। 5
4. (क) मान लीजिए $\mathbf{R}=\mathbf{Z}+\sqrt{2} \mathbf{Z}$ और $\left.\mathrm{S}=\left\{\left.\left[\begin{array}{cc}a & 2 b \\ b & a\end{array}\right] \right\rvert\, a, b \in \mathbf{Z}\right\} \right\rvert\, \quad$ दिखाइए \quad कि $\theta: \mathrm{R} \rightarrow \mathrm{S}$ जो $\theta(a+\sqrt{2} b)=\left[\begin{array}{cc}a & 2 b \\ b & a\end{array}\right]$ द्वारा परिभाषित है, एक वलय तुल्याकारिता है। 5
(ख) बताइए कि \mathbf{Q} / \mathbf{Z} क्यों \mathbf{R} / \mathbf{Z} का एक उपसमूह है। दिखाइए कि $\mathbf{Z}+a \in \mathbf{R} / \mathbf{Z}$ की परिमित कोटि तभी और केवल तभी होती है जब $a \in \mathbf{Q}$ हो।

5
5. (क) मान लीजिए G कोटि 54 वाला एक समूह है। G के कितने सीलो 3 -उपसमूह, सीलो 2 -उपसमूह और सीलो 5 -उपसमूह होते हैं ? अपने उत्तर की पुष्टि कीजिए।
(ख) पूर्णांकों के समुच्चय \mathbf{Z} पर एक सम्बन्ध R इस प्रकार परिभाषित कीजिए कि $a \mathrm{R} b$ यदि 3 , $a-b$ को विभाजित करता हो। दिखाइए कि R एक तुल्याकारी सम्बन्ध है। भिन्न-भिन्न तुल्याकारी वर्ग भी ज्ञात कीजिए।

4
6. (क) दिखाइए कि वलय $\mathrm{Q}[x]$ की अनंततः अनेक गुणजावलियाँ हैं।
(ख) $\mathbf{Z}[\sqrt{-3}]$ में अखंडनीय अवयवों के गुणनफल के रूप में 4 के दो अलग-अलग गुणनखंडन देते हुए सिद्ध कीजिए कि $\mathbf{Z}[\sqrt{-3}]$ यू. ए. फ. डी. नहीं है।
(ग) सिद्ध कीजिए कि अभाज्य कोटि वाला प्रत्येक समूह चक्रीय होता है।
7. बताइए कि निम्नलिखित कथन सत्य हैं या असत्य। अपने उत्तर की पुष्टि, क्रमशः, एक लघु उपपत्ति या प्रतिउदाहरण द्वारा कीजिए :
(क) यदि $f: \mathbf{Z} \rightarrow \mathbf{Z}$ एक फलन है और $\mathrm{A} \subset \mathbf{Z}$ है तो $f^{-1}(f(\mathrm{~A})) \subset \mathrm{A}$ है।
(ख) \mathbf{Z}_{8} से \mathbf{Z} तक एक अतुच्छ समूह समाकारिता होती है।
(ग) समूह S_{7} में कोटि 11 वाला एक अवयव है।
(घ) ठीक-ठीक 6 अवयव वाला एक क्षेत्र होता है।
(ङ) एक वलय की दो उप-वलयों का सम्मिलन भी उस वलय की एक उप-वलय है।

