BACHELOR OF SCIENCE (B. SC.) Term-End Examination
 June, 2023

CHE-10 : SPECTROSCOPY

Time : 2 Hours
 Maximum Marks : 50

Note : Answer any five questions. All questions carry equal marks. Use of Log tables and Non-programmable/Scientific calculators is allowed.

$$
\begin{aligned}
& \beta_{e}=9.274 \times 10^{-24} \mathrm{JT}^{-1}, \\
& h=6.626 \times 10^{-34} \mathrm{Js}, c=3 \times 10^{8} \mathrm{~ms}^{-1} .
\end{aligned}
$$

1. (a) Derive the term symbol for the D state of hydrogen atom.
(b) Explain improper rotation about an axis using staggered conformation of ethane. 2
(c) Using VSEPR theory, find the shape of PF_{5} molecule.
(d) Which of the following molecules would exhibit rotational spectrum ?
$\mathrm{HF}, \mathrm{H}_{2}, \mathrm{CO}_{2}, \mathrm{NO}$
2. (a) From the rotational spectra of ${ }^{14} \mathrm{NO}$ and ${ }^{15} \mathrm{NO}$, it was found that $\frac{\mathrm{B}}{\mathrm{B}^{\prime}}=1.0361$, where B and B^{\prime} are rotational constants for ${ }^{14} \mathrm{NO}$ and ${ }^{15} \mathrm{NO}$, respectively. Calculate the atomic mass of ${ }^{15} \mathrm{~N}$ if the masses of ${ }^{14} \mathrm{~N}$ and O are 14.004 a.m.u. and 15.999 a.m.u., respectively. 3
(b) Calculate the force constant for HCl if it absorbs at $2886 \mathrm{~cm}^{-1}$. Given that : $\mu=1.63 \times 10^{-27} \mathrm{~kg}$.
(c) Using $m_{1} r_{1}=m_{2} r_{2}$, derive $r_{2}=\frac{m_{1} r}{\left(m_{1}+m_{2}\right)}$, where $r=r_{1}+r_{2}$.
(d) How many normal modes of vibrations does $\mathrm{H}_{2} \mathrm{O}$ molecule have ? Out of these, how many are (i) stretching and (ii) bending modes? 2
3. (a) Explain the following :
(i) The IR frequency of $\searrow \mathrm{C}=\mathrm{O}$ group in acyl chlorides is higher than that in alkyl esters.
(ii) The IR frequency of $\overline{-}=\mathrm{O}$ group in methyl acetate is less than that in phenyl acetate.
(b) Discuss the origin of Stokes and antiStokes lines in Raman spectrum. Why are anti-Stokes lines generally weaker in intensity than Stokes lines? 3
(c) The following table gives the data obtained from IR and Raman spectra of $\mathrm{N}_{2} \mathrm{O}$: 4

$\bar{v} / \mathrm{cm}^{-1}$	IR	Raman
589	Strong; PQR band	-
1285	Very strong; PR band	Very strong
2224	Very strong; PR band	Strong

Establish the structure of $\mathrm{N}_{2} \mathrm{O}$.
P. T. 0.
4. (a) What is Franck-Condon's principle ? What kind of electronic spectrum is expected when $\mathrm{R}_{e}^{\prime}=\mathrm{R}_{e}$? Explain using suitable diagram. 3
(b) Explain the difference between intersystem crossing and internal conversion.
(c) Explain the various types of electronic transition that can occur in an organic molecule. Use an appropriate diagram. 4
5. (a) Discuss the effect of solvents on $\pi \rightarrow \pi$ * and $n \rightarrow \pi^{*}$ transitions in UV spectrum. 4
(b) Explain the following terms:
(i) Chromophore
(ii) Bathochromic shift
(c) Discuss the origin of peaks at $m / z 86,71$ and 43 in the mass spectrum of 2-methylpentane. 3
6. (a) HgS and KMnO_{4} are intensely colored though there is no possibility of $d-d$ transitions in them. Explain. 2
(b) Name the radiation sources used in IR and Raman spectroscopy. 2
(c) Discuss the method of handling liquid sample for IR spectroscopy. 2
(d) Draw a block diagram of a spectrometer and explain the role of various components in it. 4
7. (a) Draw and explain the high resolution NMR spectrum of ethanol. 2
(b) The benzene anion has $g=2.0025$. At what magnetic induction, B_{z} would its spectral line be centered at a frequency of 9.4 GHz ?

2
(c) A compound having molecular formula $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$ shows the following data : 6
P. T. O.

UV (nm) : 274
IR $\left(\mathrm{cm}^{-1}\right)=1716,2941-2857,1460$
Mass (m / z) : 72, 57, 43
NMR (8) : 1.0 (triplet, 3H)
2.47 (quartet, 2H)
2.20 (singlet, 3 H)

Predict the structure of the compound and relate the spectral data to various units present in the compound.

CHE-10

विज्ञान स्नातक (बी. एस-सी.)
 सत्रांत परीक्षा

जून, 2023
सी.एच.ई.-10 : स्पेक्ट्रमिकी

समय : 2 घण्टे
अधिकतम अंक : 50

नोट : किन्हीं पाँच प्रश्नों के उत्तर दीजिए। सभी प्रश्नों के अंक समान हैं। लॉग सारणियों तथा नॉन-प्रोग्रामीय/वैज्ञानिक कैल्कुलेटरों के पयोग की अनुमति है।
$\beta_{e}=9.274 \times 10^{-24} \mathrm{JT}^{-1}$,
$h=6.626 \times 10^{-34} \mathrm{Js}, c=3 \times 10^{8} \mathrm{~ms}^{-1}$

1. (क)हाइड्रोजन परमाणु की D अवस्था के लिए

$$
\text { पद-प्रतीक व्युत्पन्न कीजिए। } 3
$$

(ख) एथेन के सांतरित कॉन्फार्मेशन का उपयोग करते हुए घूर्णन के व्यामिश्र अक्ष की व्याख्या कीजिए। 2
P. T. O.
(ग) वी. एस. ई. पी. आर. सिद्धान्त द्वारा PF_{5} अणु की आकृति ज्ञात कीजिए। 3
(घ) निम्नलिखित में से कौन-से अणु घूर्णन स्पेक्ट्रम दर्शाएँगे ?2
$\mathrm{HF}, \mathrm{H}_{2}, \mathrm{CO}_{2}, \mathrm{NO}$
2. (क) ${ }^{14} \mathrm{NO}$ और ${ }^{15} \mathrm{NO}$ के घूर्णन स्पेक्ट्रमों से $\frac{\mathrm{B}}{\mathrm{B}^{\prime}}=1.0361$ ज्ञात हुआ, जहाँ B और B^{\prime} क्रमशः ${ }^{14} \mathrm{NO}$ और ${ }^{15} \mathrm{NO}$ के घूर्णन स्थिरांक हैं। यदि ${ }^{14} \mathrm{~N}$ और O के परमाणु द्रव्यमान क्रमशः
14.004 a.m.u. और 15.999 a.m.u. हों, तो ${ }^{15} \mathrm{~N}$

का परमाणु द्रव्यमान ज्ञात कीजिए।3
(ख) HCl का बल स्थिरांक परिकलित कीजिए, यदि यह $2886 \mathrm{~cm}^{-1}$ पर अवशोषण करता हो। दिया गया है : $\mu=1.63 \times 10^{-27} \mathrm{~kg}$ । 3
(ग) $m_{1} r_{1}=m_{2} r_{2}$ का उपयोग करके $r_{2}=\frac{m_{1} r}{\left(m_{1}+m_{2}\right)}$ व्युत्पन्न कीजिए, जहाँ $r=r_{1}+r_{2}$ ।2
(घ) $\mathrm{H}_{2} \mathrm{O}$ अणु की कितनी कम्पन की सामान्य विधाएँ होती हैं ? इनमें से कितनी (i) तनन और कितनी (ii) बंकन विधाएँ हैं ?2
3. (क)निम्नलिखित की व्याख्या कीजिए : 3
(i) अवरक्त स्पेक्ट्रम में ऐसिल क्लोराइडों में ${ }^{2} \mathrm{C}=\mathrm{O}$ समूह की आवृत्ति ऐल्किल एस्टरों में $\geq \mathrm{C}=\mathrm{O}$ समूह की आवृत्ति से उच्चतर होती है।
(ii) अवरक्त स्पेक्ट्रम में, मेथिल ऐसीटेट में - $\mathrm{C}=\mathrm{O}$ समूह की आवृत्ति, फेनिल ऐसीटेट में ${ }^{7} \mathrm{C}=\mathrm{O}$ समूह की आवृत्ति से कम होती है।
(ख)रमन स्पेक्ट्रम में, स्टोक्स और प्रति-स्टोक्स रेखाओं की उत्पत्ति की चर्चा कीजिए। प्रति-स्टोक्स रेखाएँ सामान्यतः तीव्रता में स्टोक्स रेखाओं की तुलना में दुर्बल क्यों होती हैं ?
P. T. O.
(ग) निम्नलिखित सारणी में $\mathrm{N}_{2} \mathrm{O}$ के लिए अवरक्त और रमन स्पेक्ट्रमों में प्राप्त आँकडे़ दिए गए हैं :4

$\bar{v} / \mathrm{cm}^{-1}$	अवरक्त	रमन
589	प्रबल PQR बैंड	-
1285	अत्यंत प्रबल PR बैंड	अत्यंत प्रबल
2224	अत्यंत प्रबल PR बैंड	प्रबल

$\mathrm{N}_{2} \mathrm{O}$ की संरचना स्थापित कीजिए।
4. (क) फ्रैंक-कॉण्डन सिद्धान्त क्या होता है ? जब $\mathrm{R}_{e}^{\prime}=\mathrm{R}_{e}$ हो, तो किस प्रकार का इलेक्ट्रॉनिक स्पेक्ट्रम अपेक्षित होता है ? उचित चित्र द्वारा व्याख्या कीजिए। 3
(ख) अंतरा निकाय लंघन और आंतरिक रूपांतरण में अन्तर की व्याख्या कीजिए।
(ग) किसी कार्बनिक यौगिक में विभिन्न प्रकार के हो सकने वाले इलेक्ट्रॉनिक सक्रमणों की व्याख्या कीजिए। उचित चित्र का उपयोग कीजिए। 4
5. (क)पराबैंगनी स्पेक्ट्रम में $\pi \rightarrow \pi$ * और $n \rightarrow \pi$ * संक्रमणों पर विलायक के प्रभाव की चर्चा कीजिए।
(ख) निम्नलिखित पदों की परिभाषा दीजिए : 3
(i) वर्णमूलक
(ii) वर्णोत्कर्षी सृटि
(ग) 2-मेथिलपेन्टेन के द्रव्यमान स्पेक्ट्रम में $m / z 86$, 71 और 43 पर प्राप्त शिखरों की उत्पत्ति की चर्चा कीजिए।
6. (क) HgS और KMnO_{4} का रंग अत्यधिक गहरा होता है हालांकि उनमें $d-d$ संक्रमणों की कोई संभावना नहीं होती है। व्याख्या कीजिए। 2
(ख)अवरक्त और रमन स्पेक्ट्रमिकी में प्रयुक्त विकिरण के स्रोतों के नाम लिखिए। 2
(ग) अवरक्त स्पेक्ट्रमिकी के द्रव प्रतिदर्श के प्रतिचयन की विधि की चर्चा कीजिए। 2
(घ) एक स्पेक्ट्रममापी का खंड आरेख बनाइए और उसके विभिन्न घटकों के कार्य की व्याख्या कीजिए।
7. (क) एथेनॉल के उच्च विभेदन एन. एम. आर. को आरेखित कीजिए और उसकी व्याख्या कीजिए। 2
(ख) बेन्जीन ॠणायन का $g=2.0025$ है। किस चुम्बकीय प्रेरण, B_{z} पर इसकी स्पेक्ट्रमी रेखा 9.4 GHz आवृत्ति पर केन्द्रित होगी ? 2
(ग) अणु सूत्र $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$ वाला एक यौगिक निम्नलिखित स्पेक्ट्रमी आँकड़े दर्शाता है :

पराबैंगनी (nm) : 274
अवरक्त $\left(\mathrm{cm}^{-1}\right): 1716,2941-2857,1460$ द्रव्यमान (m / z) : 72, 57, 43 एन. एम. आर. (δ) : 1.0 (त्रिक, 3 H),
2.47 (चतुष्क, 2 H),
2.20 (एकक, 3 H)

यौगिक की संरचना बताइए और यौगिक में उपस्थित इकाइयों के साथ सम्बन्धित कीजिए।

