BACHELOR OF SCIENCE (GENERAL) (BSCG)

Term-End Examination
June, 2023
BPHCT-135 : THERMAL PHYSICS AND STATISTICAL MECHANICS

Time : 2 Hours
Maximum Marks : 50

Note: (i) All questions are compulsory. However, internal choices are given.
(ii) You can use a calculator.
(iii) Symbols have their usual meanings.
(iv) The marks for each question are indicated against it.

1. Attempt any five parts:
$2 \times 5=10$
(a) Write the van der Waals equation of state for n moles of gas.
(b) Write one example each of a diathermal boundary and adiabatic boundary.
P. T. O.
(c) Show Carnot cycle on indicator diagram.
(d) What is Joule-Thomson effect?
(e) Show graph of spectral energy density of a black body with wavelength at 6000 K .
(f) What is a phase space ? State its significance in statistical mechanics.
(g) B-E and F-D systems are at the same temperature and have same number of particles. Draw B-E and F-D distribution functions versus $(\varepsilon-\mu) / k_{\mathrm{B}} \mathrm{T}$.
2. Answer any two parts :
$2 \times 5=10$
(a) Discuss Regnault's experiments on hydrogen, nitrogen and carbon dioxide for 273 K.
(b) Calculate $v_{\text {rms }}$ for oxygen molecules at 300 K. Given :

$$
\begin{aligned}
& m_{\mathrm{O}_{2}}=5.31 \times 10^{-26} \mathrm{~kg} \\
& k_{\mathrm{B}}=1.38 \times 10^{-23} \mathrm{JK}^{-1} .
\end{aligned}
$$

and
(c) Discuss Einstein's theory of Brownian motion.
3. Attempt any two parts :
(a) The pressure inside a tyre is 3 atm. at 300 K. It bursts suddenly. Assuming the change to be adiabatic, calculate the final temperature. Take $\gamma=1.4$.
(b) Write parametric and exact equations of state for paramagnetic solid and stretched wire.
(c) The coefficient of viscosity of a gas is $16.6 \times 10^{-6} \mathrm{Nsm}^{-2}$. Calculate the diameter of gas molecular at STP, when average molecular velocity $\overline{\mathrm{V}}=4.5 \times 10^{2} \mathrm{~ms}^{-1}$; number density $=2.7 \times 10^{25}$ molecules m^{-3}; and molecular weight of gas $=28$. Take Avogadro's number $=6.023 \times 10^{26} \mathrm{~K} \mathrm{~mol}^{-1}$.
4. Starting from first law of thermodynamics, derive Mayer's formula :

$$
\mathrm{C}_{p}-\mathrm{C}_{v}=\mathrm{R}
$$

Or

m gram of water at temperature T_{1} is mixed with an equal mass of water of temperature T_{2}. Show that the change in entropy in this process is :

$$
\Delta s=2 m \mathrm{C}_{p} \ln \left(\frac{\mathrm{~T}_{a v}}{\sqrt{\mathrm{~T}_{1} \mathrm{~T}_{2}}}\right),
$$

where $\mathrm{T}_{a v}=\frac{\mathrm{T}_{1}+\mathrm{T}_{2}}{2}$ is average temperature.
5. The thermodynamic probability for a B-E system is given by :

$$
\mathrm{W}=\prod_{i} \frac{\left(g_{i}+\mathrm{N}_{i}-1\right)!}{\mathrm{N}_{i}!\left(g_{i}-1\right)!}
$$

Obtain expression for distribution function. Or
Calculate the Fermi energy for copper, if $\frac{\mathrm{N}}{\mathrm{V}}=8.53 \times 10^{22}$ electrons cm^{-3}. Also calculate the pressure exerted by electrons in a copper wire. Take the mass of electron as $9.1 \times 10^{-28} \mathrm{~g}$ and $h=6.62 \times 10^{-27}$ ergs. $\quad 5+5$

ВРНСТ-135

विज्ञान स्नातक (सामान्य) (बी.एस.सी.जी.) सत्रांत परीक्षा

जून, 2023
बी.पी.एच.सी.टो.-135 : ऊष्मीय भौतिकी और सांख्यिकीय यांत्रिकी

समय : 2 घण्टे
अधिकतम अंक : 50

नोट : (i) सभी प्रश्न अनिवार्य हैं। लेकिन आंतरिक विकल्प दिए गए हैं।
(ii) आप कैल्कुलेटर का प्रयोग कर सकते हैं।
(iii) प्रतीकों के अपने सामान्य अर्थ हैं।
(iv) प्रत्येक प्रश्न के अंक उसके सामने दिए गए हैं।

1. किन्हीं पाँच भागों के उत्तर लिखिए : $2 \times 5=10$
(क) गैस के n मोलों के लिए वाण्डर वाल्स अवस्था समीकरण लिखिये।
(ख) ऊष्मा-पार्य परिसीमा और रुद्धोष्म परिसीमा का एक-एक उदाहरण लिखिए।
(ग) काना चक्र को सूचक आलेख पर दर्शाइए।
P. T. O.
(घ) जूल-थॉमसन प्रभाव क्या होता है ?
(ङ) कृष्णिका विकिरण का स्पेक्ट्रमी ऊर्जा घनत्व का तरंगदैर्घ्य के सापेक्ष आलेख 6000 K तापमान के लिए खींचिए।
(च) प्रावस्था समष्टि क्या होती है ? सांख्यिकीय यांत्रिकी में इसकी सार्थकता बताइए।
(छ) B-E तथा F-D तंत्रों में समान तापमान पर कणों की संख्या बराबर है। B-E तथा F-D वितरण फलनों का $(\varepsilon-\mu) / k_{\mathrm{B}} \mathrm{T}$ के सापेक्ष आलेख खींचिए।
2. किन्हीं दो भागों के उत्तर लिखिए : $2 \times 5=10$
(क) हाइड्रोजन, नाइट्रोजन एवं कार्बन डाइऑक्साइड के लिए 273 K पर रेना के प्रयोगों का विवरण दीजिए।
(ख) ऑक्सीजन अणुओं के लिए 300 K तापमान पर v_{rms} का मान ज्ञात कीजिए। दिया है :

$$
m_{\mathrm{O}_{2}}=5.31 \times 10^{-26} \mathrm{~kg}
$$

तथा $\quad k_{\mathrm{B}}=1.38 \times 10^{-23} \mathrm{JK}^{-1}$
(ग) ब्राउनी गति के लिए आइन्स्टोन के सिद्धान्त की व्याख्या कीजिए।
3. किन्हीं दो भागों के उत्तर लिखिए :
$2 \times 5=10$
(क) एक टायर में 300 K तापमान पर दाब 3 atm . है। यह टायर अचानक फट जाता है। इस परिवर्तन को रुद्धोष्म मानकर अंतिम तापमान परिकलित कीजिए। $\gamma=1.4$ लीजिए।
(ख) अनुचुम्बकीय ठोस एवं तानित तार के लिए प्राचलिक एवं यथार्थ अवस्था समीकरण लिखिए।
(ग) किसी गैस का श्यानता गुणांक $16.6 \times 10^{-6} \mathrm{Nsm}^{-2}$ है। मानक तापमान और दाब पर इसके अणु का व्यास ज्ञात कीजिए, जबकि औसत आण्विक वेग $\overline{\mathrm{V}}=4.5 \times 10^{2} \mathrm{~ms}^{-1}$, संख्या घनत्व $=2.7 \times 10^{25}$ अणु m^{-3} और गैस का अणुभार 28 है। आवोगाद्रो संख्या $=6.023 \times 10^{26} \mathrm{~K} \mathrm{~mol}^{-1}$ लीजिए।
4. ऊष्मागतिकी के प्रथम नियम का प्रयोग करके मेयर सूत्र

$$
\begin{equation*}
\mathrm{C}_{p}-\mathrm{C}_{v}=\mathrm{R} \text { व्युत्पन्न कीजिए। } \tag{10}
\end{equation*}
$$

P. T. 0.

अथवा

तापमान T_{1} पर m ग्राम जल को इतन ही समान द्रव्यमान के जल के साथ जो तापमान T_{2} पर है, मिश्रित किया जाता है। सिद्ध कीजिए कि इस प्रक्रम में एन्ट्रॉपी परिवर्तन है :

$$
\Delta s=2 m \mathrm{C}_{p} \ln \left(\frac{\mathrm{~T}_{a v}}{\sqrt{\mathrm{~T}_{1} \mathrm{~T}_{2}}}\right)
$$

जहाँ $\mathrm{T}_{\mathrm{av}}=\frac{\mathrm{T}_{1}+\mathrm{T}_{2}}{2}$ औसत तापमान है।
5. B-E तंत्र के लिए ऊष्मागतिक प्रायिकता का व्यंजक निम्नलिखित है :

$$
\mathrm{W}=\prod_{i} \frac{\left(g_{i}+\mathrm{N}_{i}-1\right)!}{\mathrm{N}_{i}!\left(g_{i}-1\right)!}
$$

इससे बंटन फलन का व्यंजक प्राप्त कीजिए।

अथवा

यदि ताँबे के लिए $\frac{\mathrm{N}}{\mathrm{V}}=8.53 \times 10^{22}$ इलेक्ट्रॉन cm^{-3} हो, तो फर्मी ऊर्जा $\left(\varepsilon_{\mathrm{F}}\right)$ परिकलित कीजिए। साथ ही, ताँबे के तार में इलेक्ट्रॉनों द्वारा लगाया गया दाब भी परिकलित कीजिए। इलेक्ट्रॉन का द्रव्यमान $9.1 \times 10^{-28} \mathrm{~g}$ तथा $h=6.62 \times 10^{-27} \mathrm{ergs}$ लीजिए।

