POST GRADUATE DIPLOMA IN COMPUTER APPLICATIONS
 (PGDCA-NEW)

Term-End Examination
June, 2023

MCS-202 : COMPUTER ORGANISATION

Time : 3 Hours
Maximum Marks : 100
Weightage : 70\%
Note: Question Number 1 is compulsory and carries 40 marks. Attempt any three questions from Question No. 2 to Question No. 5.

1. (a) Perform the following operations using signed 2's complement notation of size 8 bits, which includes the sign bit. Also indicate overflow or no-overflow, giving reasons. Thereof :
(i) Add - 39 and +126
P. T. 0.
(ii) Subtract - 38 from 90
(iii) Add -79 and -49
(b) Simplify the following function using Karnaugh's map : 5

$$
\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\Sigma(5,6,8,11,13,14,15)
$$

Draw the logic circuit for the simplified function.
(c) Explain the Direct Cache mapping scheme with the help of an example.
(d) What is an interrupt? List all the steps that are required to be performed by hardware or software to process an interrupt.
(e) Explain the steps required to process Branch (BR) instruction, subroutine call and return instruction of a computer which uses a stack for storing the return address. You may assume the necessary registers required for this purpose.
(f) Explain the horizontal and vertical microinstructions with the help of a suitable diagram. 5
(g) Explain the following instructions of 8086 microprocessor with the help of an example :
(i) SHL
(ii) RCL
(h) Write a 8086 assembly language program to find the largest value in an array consisting of 5 values. You may assume that these values are stored in the memory. The largest value may be kept in AX register. Make suitable assumptions. 5
2. (a) Perform the following conversions :
(i) $(225)_{10}$ to hexadecimal
(ii) $(\mathrm{AAA})_{16}$ to octal
(iii) (6761)8 to hexadecimal
(iv) $(\mathrm{ABC})_{16}$ to decimal
(v) $(225)_{8}$ to decimal
P.T. 0.
(b) Explain the functions of the components of a central processing unit with the help of a diagram.
(c) Draw the truth table and logic diagram of a 4×1 multiplexer and explain its functioning.
(d) Draw the logic diagram of a ripple counter and explain its functioning.
3. (a) Explain the structure of magentic disk with the help of a diagram. Also, explain the term constant angular velocity (CAV) in this context.
(b) Explain the concept of memory interleaving with the help of an example. 4
(c) What is the role of Input/Output interfaces? Explain.
(d) Explain the following terms in the context of Input/Output technologies :
(i) Refresh rate
(ii) Optical resolution
(iii) Impact printers
4. (a) Explain the following addressing schemes with the help of an example for each : 6
(i) Immediate addressing
(ii) Direct addressing
(iii) Register addressing
(b) Explain the microoperations required for Fetching an Instruction (FI). You may assume suitable registers for this. 5
(c) Explain the working of a Wilke's controlunit with the help of a diagram.
(d) Explain any four differences between the RISC and CISC machines. 4
5. (a) Compute the physical address in 8086 microprocessor for the following pairs : (all values are in hexadecimal) :
(i) $\mathrm{CS}: \mathrm{IP} \equiv 10 \mathrm{FFh}: 0111 \mathrm{~h}$
(ii) $\mathrm{DS}: \mathrm{BX} \equiv 0322 \mathrm{~h}: 20 \mathrm{FFh}$
(iii) $\mathrm{SS}: \mathrm{SP} \equiv 0111 \mathrm{~h}: 2222 \mathrm{~h}$
(b) Explain the differences between .COM programs and .EXE programs, in the context of Assembly language, with the help of an example. 5
(c) Write a program in 8086 assembly language to interchange the values of two byte locations in the memory.
(d) Explain the concept of FAR and NEAR procedures in 8086 assembly language. 4

