BACHELOR OF COMPUTER

APPLICATIONS (BCA) (REVISED)

Term-End Examination
June, 2023
BCS-054 : COMPUTER ORIENTED NUMERICAL TECHNIQUES

Note: (i) Any calculator is allowed during examination.
(ii) Question No. 1 is compulsory. Attempt any three more from the next four questions.

1. (a) Use Gauss elimination method to solve the system of linear equations given below : 6

$$
\begin{gathered}
x_{1}+x_{2}+x_{3}=3 \\
4 x_{1}+3 x_{2}+4 x_{3}=8 \\
9 x_{1}+3 x_{2}+4 x_{3}=7
\end{gathered}
$$

P. T. O.
(b) Use Gauss Jacobi method to solve the system of linear equations given below (results should be correct upto two decimal places only) :

$$
\begin{gathered}
-4 x_{1}+x_{2}+10 x_{3}=21 \\
5 x_{1}-x_{2}+x_{3}=14 \\
2 x_{1}+8 x_{2}-x_{3}=-7 .
\end{gathered}
$$

(c) Use Bisection method to find positive root of the equation $x^{3}+4 x^{2}-10=0$, correct upto two places of decimal.6
(d) Perform the following : 6
(i) Express operator E in terms of operator δ.
(ii) Express operator μ in terms of operator δ.
(e) Determine the Newton's forward difference interpolating polynomial that satisfies the data tabulated ahead :

x	$f(x)$
1	1
2	4
3	9
4	16
5	25

Also, find the value of $f(x)$ at $x=1.7$.
(f) Determine y^{\prime} and $y^{\prime \prime}$ at $x=2.25$, using Newton's Forward Difference (FD) formula for the data given below :

x	$y=\sqrt{x}$
1.5	1.2247
2.0	1.4142
2.5	1.5811
3.0	1.7320
3.5	1.8708

(g) Calculate the value of the integral $\int_{4}^{5.2} \log x d x$, using Trapezoidal rule (assume $h=0.2$).
P. T. O.
2. (a) Use Euler method to find the solution of $y^{\prime}=f(t, y)=t+y$, given $y(0)=1$, take $h=0.2$ and find solution on $[0,0.8]$. 8
(b) Find Maclaurin's series of $f(x)=e^{x}$ around $x=0.4$
(c) Determine approximate root of the equation : 8

$$
\cos x-x e^{x}=0
$$

using Secant method with two initial approximations as $x_{0}=0$ and $x_{1}=1$. Perform two iterations.
3. (a) Write Newton-Raphson iterative scheme to find inverse of an integer number N. Hence find inverse of 17 correct upto 4 places of decimal starting with 0.05 . 8
(b) Write expressions for Δ, ∇, δ and μ operators in terms of operator E . 4
(c) Find Lagrange's interpolating polynomial for the data given below :

x	$f(x)$
$\frac{1}{4}$	-1
$\frac{1}{3}$	2
1	7

4. (a) Use Divided difference table to find the value of $f(a, b, c)$, for $f(x)=x^{3}$.
(b) Use Stirling's formula for differentiation on the data given below, to find the value of x for which $f(x)$ attains its maximum value:

x	$y=f(x)$
1	7
2	15
3	21
4	19
5	3

P. T. O.
(c) Evaluate $\int_{0}^{1} \frac{d x}{1+x^{2}}$ using Simpon's rule, subdivide the interval $(0,1)$ into 6 equal parts.
5. (a) Solve the Initial Value Problem (IVP) $y^{\prime}=-t y^{2}, y(2)=1$. Also, find y (2.1) and y (2.2) with $h=0.1$, using modified Euler's method. 10
(b) Use classical R-K method of order 4 to solve the IVP $y^{\prime}=2 y+3 e^{t}, y(0)=0$; and find $y(0.1), y(0.2)$ and $y(0.3)$. 10

