No. of Printed Pages : 6

BCS-054

BACHELOR OF COMPUTER APPLICATIONS (BCA) (REVISED)

Term-End Examination

June, 2023

BCS-054 : COMPUTER ORIENTED NUMERICAL TECHNIQUES

Time : 3 Hours

Maximum Marks : 100

- Note: (i) Any calculator is allowed during examination.
 - (ii) Question No. 1 is compulsory. Attempt any three more from the next four questions.
- 1. (a) Use Gauss elimination method to solve the system of linear equations given below : 6

$$x_1 + x_2 + x_3 = 3$$
$$4x_1 + 3x_2 + 4x_3 = 8$$
$$9x_1 + 3x_2 + 4x_3 = 7$$

(b) Use Gauss Jacobi method to solve the system of linear equations given below (results should be correct up to two decimal places only):

$$-4x_1 + x_2 + 10x_3 = 21$$

$$5x_1 - x_2 + x_3 = 14$$

$$2x_1 + 8x_2 - x_3 = -7.$$

- (c) Use Bisection method to find positive root of the equation $x^3 + 4x^2 - 10 = 0$, correct upto two places of decimal. 6
- (d) Perform the following : 6
 - (i) Express operator E in terms of operator δ .
 - (ii) Express operator μ in terms of operator δ .
- (e) Determine the Newton's forward difference interpolating polynomial that satisfies the data tabulated ahead :

f(x)
1
4
9
16
25

Also, find the value of f(x) at x = 1.7.

(f) Determine y' and y'' at x = 2.25, using Newton's Forward Difference (FD) formula for the data given below : 5

x	$y = \sqrt{x}$
1.5	1.2247
2.0	1.4142
2.5	1.5811
3.0	1.7320
3.5	1.8708

(g) Calculate the value of the integral $\int_{4}^{5.2} \log x \, dx$, using Trapezoidal rule (assume h = 0.2). 5

P. T. O.

2. (a) Use Euler method to find the solution of

$$y' = f(t, y) = t + y$$
, given $y(0) = 1$, take
 $h = 0.2$ and find solution on $[0, 0.8]$. 8

(c) Determine approximate root of the equation :

$$\cos x - xe^x = 0$$

using Secant method with two initial approximations as $x_0 = 0$ and $x_1 = 1$. Perform two iterations.

- 3. (a) Write Newton-Raphson iterative scheme to find inverse of an integer number N. Hence find inverse of 17 correct upto 4 places of decimal starting with 0.05.
 - (b) Write expressions for Δ, ∇, δ and μ operators in terms of operator E. 4

[4]

- [5]
- (c) Find Lagrange's interpolating polynomial for the data given below : 8

x	f(x)
$\frac{1}{4}$	-1
$\frac{1}{3}$	2
1	7

- 4. (a) Use Divided difference table to find the value of f(a,b,c), for $f(x) = x^3$. 4
 - (b) Use Stirling's formula for differentiation on the data given below, to find the value of x for which f(x) attains its maximum value :

1	0
-	\mathbf{U}

x	y = f(x)
1	7
2	15
3	21
4	19
5	3

- (c) Evaluate $\int_0^1 \frac{dx}{1+x^2}$ using Simpon's rule, subdivide the interval (0, 1) into 6 equal parts. 6
- 5. (a) Solve the Initial Value Problem (IVP) $y' = -ty^2$, y(2) = 1. Also, find y (2.1) and y (2.2) with h = 0.1, using modified Euler's method. 10
 - (b) Use classical R-K method of order 4 to solve the IVP $y' = 2y + 3e^t$, y(0) = 0; and find y (0.1), y(0.2) and y(0.3). 10

[6]