MSTL-003 (Set-2) POST GRADUATE DIPLOMA IN APPLIED STATISTICS (PGDAST) Biostatistics Lab

Duration : 3 hours

Maximum Marks : 50

- Note: 1. Attempt any two questions.
 - 2. Solve the questions in Microsoft Excel.
 - 3. Use of "Formulae and Statistical Tables Booklet of PGDAST is allowed.
 - 4. Mention necessary steps, hypotheses, interpretations, etc.
- A group of cancer patients were randomly assigned either Treatment A or Treatment B. They were followed for 300 days to record their time of death. The survival data are as follows:

Patient	Survival	Treatment	Outcome
ID	Time		(1-Died
			0-Censored)
P01	194	1	1
P02	98	2	1
P03	236	2	1
P04	300	1	0
P05	204	1	1

P06	76	2	0
P07	44	2	0
P08	99	1	1
P09	132	2	0
P10	266	1	1
P11	62	2	0
P12	201	1	1
P13	262	1	1
P14	300	1	1
P15	221	2	1
P16	255	1	1
P17	37	2	0
P18	268	1	1
P19	37	2	0
P20	111	1	0
P21	67	2	1
P22	175	2	0
P23	192	1	0
P24	102	2	1
P25	300	1	0
P26	250	1	0
P27	145	1	1
	1		

P28	91	2	1
P29	150	2	1
P30	207	1	0
P31	62	2	1
P32	300	1	0
Р33	101	1	0
P34	74	1	1
P35	275	2	0
P36	74	1	1
P37	300	2	0
P38	28	2	1

- (i) Estimate the Kaplan-Meier probabilities for both treatments.
- (ii) Construct the Kaplan-Meier survival curve for both treatments.
- (iii) Test whether there is a significant difference between the distributions of survival times of the patients under Treatment A and Treatment B at 5% level of significance.

2. A researcher is interested to determine the relationship between the serum creatinine (in mg/dL) with the weight (in kg) and gender (0 for female and 1 for male). The data for 30 patients were collected from the hospital records and are given as follows:

Serum Creatinine	Weight	Gender
0.7	46	1
1.3	65	1
1	59	1
1.5	84	0
1.7	91	1
1.5	78	1
1	53	0
0.7	49	1
0.5	42	0
1.6	87	0
1.1	53	1
0.8	54	0
1.3	65	1
1.1	61	1
1.2	71	0
1.1	55	1
0.9	55	0

0.9	62	0
1.1	65	0
0.8	54	0
0.5	45	0
0.6	45	1
1	62	0
0.6	40	0
1	58	1
0.5	65	1
0.9	67	1
1.3	42	1
1.1	62	0
1.4	65	1

⁽i) Fit a linear regression model and perform its related analysis at 1% level of significance.

- (ii) Check whether the fitted regression model satisfy the linearity and normality assumptions.
- 3. (a) A study was conducted to check the efficacy of a vaccine on a particular disease. The researcher selected 258 diabetic and 260 non-diabetic patients suffering from that disease for vaccination. The data so obtained are classified by taking 1 if the disease is cured and 0 if not cured and recorded the results as follows:

	Non-diabetic Patient	Diabetic Patient
Cured	135	120
Non-Cured	125	138

Test the hypothesis that the proportion of patients whose disease is cured are different in diabetic and non-diabetic groups of patients, at 5% level of significance. 10

(b) A researcher wants to study the effect of different doses (in mg) of hypertension. He gave different amount of doses to a number of patients and noted the response. The data so obtained are given as follows:

Amount of Dose	Total No. of Patients	Number of Cured Patients
5	60	24
10	48	18
15	40	12
20	80	20
25	104	26

For the given data:

- (i) Fit a logistic regression model.
- (ii) Determine the variance for the estimates of B_0 and B_1 .
- (iii) Test the significance of the model coefficients B₀ and B₁ at 5% level of significance.
- (iv) Determine the McFadden, Cox and Snell pseudo R-squared. 15