MMT-008 (P) (Set-2) M.Sc. IN MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE (M.Sc. MACS)

Probability and Statics (Practical)

Duration : $1\frac{1}{2}$ hours

Maximum Marks : 40

Note: 1. There are two questions in this paper worth 30 marks.

- 2. Both the questions are compulsory.
- 3. Remaining 10 marks are for viva-voce.
- 4. All the symbols used have their usual meaning.

1. Let $X \sim N_p$ (μ , Σ). Write a program in *C* language to obtain the distribution

of
$$Y = C X$$
, where $C = \begin{bmatrix} a_1 & a_2 \dots a_p \\ b_1 & b_2 \dots b_p \end{bmatrix}$.

Use the programme to find the distribution Y for $C = \begin{bmatrix} 2 & 1 & 2 \\ 1 & -1 & 1 \end{bmatrix}$, $\mu = \begin{vmatrix} 4 \\ -2 \\ 6 \end{vmatrix}$

and
$$\Sigma = \begin{bmatrix} 6 & 1 & 2 \\ 1 & 8 & 4 \\ 2 & 4 & 9 \end{bmatrix}$$
. 15

2. Write a program in 'C' language to fit the model $y = b_0 + b_1 x_1 + b_2 x_2$. You may assume that there are *n* observations, where $n \le 25$.

Use the program to fit the linear model for the data given below:

<i>y</i> _i	50	48	51	46	47	90	95	62	87	73
<i>x</i> _{1<i>i</i>}	3	3	2	2	5	4	2	3	1	5
<i>x</i> _{2<i>i</i>}	10	11	8	7	6	5	7	8	9	10
