MMT-007 (P) (Set-2)
 M. Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)
 M.Sc. (MACS)
 Differential Equations and Numerical Solutions

Duration : $1 ½$ hours
Maximum Marks : 40

Note: 1. There are two questions in this paper totaling 30 marks.
2. Answer both of them.
3. Remaining 10 marks are for the viva-voce.

1. Write a program in ' C ' language to solve the initial value problem

$$
\frac{d y}{d x}=y^{2} \cos x, y(0)=1
$$

in the interval $[0,2]$ using fourth order Milne's Predictor-Corrector method with $\mathrm{h}=0.4$. Calculate the starting values using the fourth order Runge-Kutta method with the same step-length. Perform two corrector iterations per steps.
2. Write a program in ' C ' language to solve the equation

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}, 0 \leq x \leq a, t \geq 0 \\
& u(x, 0)=\frac{x}{2}(1-x), \frac{\partial u}{\partial t}(x, 0)=0 \\
& u(0, t)=0, u(a, t)=\mathrm{B}
\end{aligned}
$$

Using the explicit method
$u_{i}^{n+1}=2 u_{i}^{n}-u_{i}^{n-1}+r^{2}\left[u_{i+1}^{n}-2 u_{i}^{n}+u_{i-1}^{n}\right]$
with user input $a, \mathrm{~B}, h$ and r.

Use the central difference approximations to the derivatives to obtain initial condition. Also, extend your program to integrate for two time steps. Test your program for user input
$a=1, \mathrm{~B}=0, h=1 / 4, r=1 / 2$.

