MMT-007 (P) (Set-1)
 MASTER IN MATHEMATICS WITH APPLICATIONS IN
 COMPUTER SCIENCE
 (M.Sc. MACS)

Differential Equations and Numerical Solutions

Duration : 11122 hours
Maximum Marks : 40

Note: 1. There are two questions in this paper totaling 30 marks.
2. Answer both of them.
3. Remaining 10 marks are for the viva-voce.

1. Write a program in ' C ' language to solve the initial value problem

$$
y^{1}=x^{3}+y^{3}, y(0)=1
$$

in the interval $[0,2]$ using the Predictor-Corrector method:
$\mathrm{P}: y_{n+1}=y_{n}+\frac{h}{24}\left[55 y^{\prime}{ }_{n}-59 y^{\prime}{ }_{n-1}+37 y^{\prime}{ }_{n-2}-9 y^{\prime}{ }_{n-3}\right]$
$\mathrm{C}: y_{n+1}=y_{n}+\frac{h}{24}\left[9 y^{\prime}{ }_{n+1}-19 y^{\prime}{ }_{n}-5 y^{\prime}{ }_{n-1}+y^{\prime}{ }_{n-2}\right]$

With $\mathrm{h}=0.2$. Calculate the starting value using the Euler's method with the same step length. Perform two corrector iterations per step.
2. Write a program in ' C ' language to find the solution of $\nabla^{2} u=\mathrm{G}(x, y)$ in R , subject to the given R, G and the boundary conditions, using the five point difference formula
$R: 0 \leq x \leq 1,0 \leq y \leq 1$
$G(x, y)=3 x+4 y$
$u(x, y)=\frac{x^{4}+y^{4}}{12}$ on $x=0, y=0, y=1$.
$12 u+\frac{\partial u}{\partial x}=x^{4}+y^{4}+\frac{1}{3} x^{3}$ on $x=1$
Use central difference approximation in the boundary conditions and take the step length $\mathrm{h}=\frac{1}{3}$.

