BACHELOR OF SCIENCE (GENERAL) (BSCG)

Term-End Examination
 June, 2023
 BPHET-141 : ELEMENTS OF MODERN PHYSICS

Time : 2 Hours
Maximum Marks : 50

Note: (i) Attempt all questions The marks of each question are indicated against it.
(ii) Symbols have their usual meanings.
(iii) You may use a calculator or log tables.
(iv) The values of physical constants are given at the end.

1. Answer any five parts:
(a) What is the difference between the Galilean principle of relativity and the principle of relativity stated by Einstein?
(b) Explain why we do not observe the effects of time dilation in everyday phenomena?
P. T. 0.
(c) Calculate the wavelength of a photon which has an energy of 8.0 MeV .
(d) The uncertainty in the energy of a short lived particle is 0.5 MeV . What is the smallest life time the particle can have?
(e) Determine the eigen value of the operator $\hat{\mathrm{H}}=i \hbar \frac{\partial}{\partial t}$ for the wave function :

$$
\psi=\mathrm{N} e^{i(k x-\omega t)}
$$

(f) Write the Schrödinger equation for a free particle and the expression for its energy.
(g) An element characterised by A = 238 and $Z=92$, loses 8 alpha (α) and 6 beta (β) particles in a decay process. What will the final stable product be?
(h) Calculate the mass defect (in u) of ${ }_{26}^{56} \mathrm{Fe}$ given that :

$$
\begin{aligned}
& m_{n}=1.008665 \mathrm{u}, m\left({ }_{1}^{1} \mathrm{H}\right)=1.007825 \mathrm{u}, \\
& \mathrm{M}\left({ }^{56} \mathrm{Fe}\right)=55.934932 \mathrm{u} .
\end{aligned}
$$

2. Answer any two parts :

(a) Two spaceships of proper length L_{0} approach the earth from opposite directions at velocities $\pm \frac{3 c}{5}$. What is the length of one of the spaceships with respect to the other?
(b) Derive the relativistic energy momentum relation for a free particle.
(c) (i) A spaceship is receding from earth at a speed of 0.40 c . The wavelength of light emitted by a source in the spaceship is measured to be $\lambda=450 \mathrm{~nm}$ on the spaceship. What would the wavelength of this light be as measured by an observer on earth?
(ii) Show that for $v \ll c$, the expression for the relativistic kinetic energy approaches that of the classical kinetic energy.
3. Answer any two parts : $5 \times 2=10$
(a) (i) State the probabilistic interpretation of the wave function.
(ii) List the conditions that a wave function $\psi(x, t)$ must satisfy to be an acceptable solution of the Schrödinger equation.
(b) A particle of mass m has the following wave function :

$$
\psi(x)=\left\{\begin{array}{cc}
\mathrm{N} x e^{-a x} & \text { for } x>0 \\
0 & \text { for } x<0
\end{array}\right.
$$

If the total energy of the particle is zero, determine its potential energy function.
(c) Calculate the commutator :

$$
[\hat{x} \hat{\mathrm{P}} x, \hat{\mathrm{H}}] \text { for } \hat{\mathrm{H}}=\frac{\hat{\mathrm{P}}_{\mathrm{X}}^{2}}{2 m}+\hat{\mathrm{V}}(x) .
$$

4. Answer any one part:
$10 \times 1=10$
(a) The potential function for a symmetric infinite potential well is given by :

$$
\mathrm{V}(x)=\left\{\begin{array}{ccl}
\infty & \text { for } & x<-\mathrm{L} \\
0 & \text { for } & -\mathrm{L}<x<\mathrm{L} \\
\infty & \text { for } & x>\mathrm{L}
\end{array}\right.
$$

Solve the time-independent Schrödinger equation for a particle of mass m in this potential. Obtain the even and odd parity eigen-functions and energy eigen values.
(b) Obtain the general solution of the timeindependent Schrödinger equation for a particle of mass m for a potential function defined by :

$$
\mathrm{V}(x)=\left\{\begin{array}{rll}
0 & \text { for } & x<0 \\
\mathrm{~V}_{0} & \text { for } & 0 \leq x \leq a \\
0 & \text { for } & x>a
\end{array}\right.
$$

when the energy of the particle is $\mathrm{E}<\mathrm{V}_{0}$. Write down the boundary conditions. Define the reflection and transmission coefficients and the tunnelling length.

$$
5+2+3
$$

5. Answer any two parts :

$$
5 \times 2=10
$$

(a) Calculate the energy of reaction (Q - Value) in MeV in the fusion reaction involving two deuterons to form a tritium and a proton :

$$
{ }_{1}^{2} \mathrm{H}+{ }_{1}^{2} \mathrm{H} \rightarrow{ }_{1}^{3} \mathrm{H}+{ }_{1}^{1} \mathrm{H}
$$

Take $m\left({ }_{1}^{2} \mathrm{H}\right)=2.0141029 \mathrm{u}$,
$m\left({ }_{1}^{3} \mathrm{H}\right)=3.016049 \mathrm{u}$ and
$m\left({ }_{1}^{1} \mathrm{H}\right)=1.008665 \mathrm{u}$
$1 \mathrm{u}=931.5 \mathrm{MeV} / \mathrm{c}^{2}$.
P. T. O.
(b) Explain why electrons cannot reside inside the nucleus.
(c) Plot number of neutrons versus the number of protons for naturally occurring nuclei. Explain the features of this plot.

Physical constants :

$$
h=6.626 \times 10^{-34} \mathrm{~J}-\mathrm{s}
$$

$$
m_{e}=9.1 \times 10^{-31} \mathrm{~kg}
$$

$$
m_{p}=1.6725 \times 10^{-27} \mathrm{~kg}
$$

$$
m_{n}=1.6747 \times 10^{-27} \mathrm{~kg}
$$

$$
c=3 \times 10^{8} \mathrm{~ms}^{-1}
$$

$$
\hbar=1.054 \times 10^{-34} \mathrm{~J}-\mathrm{s}
$$

$$
1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}
$$

BPHET-141

विज्ञान स्नातक (सामान्य)

(बी. एस. सी. जी.)
सत्रांत परीक्षा
जून, 2023
बी.पी.एच.ई.टी.-141 : आधुनिक भौतिकी के तत्व समय : 2 घण्टे अधिकतम अंक : 50

नोट : (i) सभी प्रश्न कीजिए। प्रत्येक प्रश्न के अंक उसके सामने दिए गये हैं।
(ii) प्रतीकों के अपने सामान्य अर्थ हैं।
(iii) आप कैल्कुलेटर या लॉग सारणी का उपयोग कर सकते हैं।
(iv) भौतिक नियतांकों के मान अंत में दिए गये हैं।

1. कोई पाँच भाग कीजिए :
(क) गैलीलीय आपेक्षिकता के नियम और आइन्सटाइन द्वारा दिये गये आपेक्षिकता के नियम में क्या अन्तर है ?
P. T. O.
(ख) काल वृद्धि का प्रभाव हमें रोजाना की परिघटनाओं में क्यों नहीं दिखाई देता ? समझाइए।
(ग) ऊर्जा 8.0 MeV वाले एक फोटॉन की तरंगदैर्घ्य परिकलित कीजिए।
(घ) लघु आयु वाले एक कण की ऊर्जा में अनिश्चितता 0.5 MeV है। इस कण का न्यूनतम जीवनकाल क्या हो सकता है ?
(ङ) तरंग फलन $\psi=\mathrm{N} e^{i(k x-\omega t)}$ के लिए, संकारक $\hat{\mathrm{H}}=i \hbar \frac{\partial}{\partial t}$ का आइगेन मान परिकलित कीजिए।
(च) मुक्त कण के लिए श्रोडिंगर समीकरण और उसकी ऊर्जा का व्यंजक लिखिये।
(छ) $\mathrm{A}=238$ एवं $\mathrm{Z}=92$ वाले तत्व के क्षय प्रक्रम में 8 अल्फा (α) और 6 बीटा (β) कण उत्सर्जित होते हैं। अंतिम स्थायी उत्पाद क्या होगा ?
(ज) नाभिक ${ }_{26}^{56} \mathrm{Fe}$ की द्रव्यमान क्षति (u में) परिकलन कीजिए। दिया है :
$m_{n}=1.008665 \mathrm{u}, m\left({ }_{1}^{1} \mathrm{H}\right)=1.007825 \mathrm{u}$,
$\mathrm{M}\left({ }^{56} \mathrm{Fe}\right)=55.934932 \mathrm{u}$.
2. कोई दो भाग कीजिए :
(क) उचित लंबाई L_{0} वाले दो अंतरिक्ष यान विपरीत दिशाओं से पृथ्वी की ओर $\pm \frac{3 c}{5}$ की चालों से गतिमान हैं। एक अंतरिक्ष यान की दूसरे अंतरिक्ष यान के सापेक्ष लंबाई क्या है ?
(ख) मुक्त कण के लिए आपेक्षिकीय ऊर्जा-संवेग सम्बन्ध व्युत्पन्न कीजिए।
(ग) (i) एक अंतरिक्ष यान $0.40 c$ की चाल से पृथ्वी से दूर जा रहा है। अंतरिक्ष यान में स्थित प्रकाश के एक स्रोत द्वारा उत्सर्जित प्रकाश की तरंगदैर्घ्य, अंतरिक्ष यान पर $\lambda=450 \mathrm{~nm}$ मापी जाती है। पृथ्वी पर स्थित प्रेक्षक इस तरंगदैर्घ्य का मान क्या मापेगा ?
(ii) सिद्ध कीजिए कि सीमा $v \ll c$ में आपेक्षिकीय गतिज ऊर्जा का व्यंजक क्लासिकी गतिज ऊर्जा के व्यंजक की ओर प्रवृत्त होता है।2
P. T. O.
3. कोई दो भाग कीजिए :
$5 \times 2=10$
(क) (i) तरंग फलन की सांख्यिकीय व्याख्या का कथन दीजिए। 2
(ii) श्रोडिगर समीकरण का मान्य हल होने के लिए एक तरंग फलन को जिन प्रतिबंधों को संतुष्ट करना होता है उन्हें सूचीबद्ध कीजिए।
(ख) द्रव्यमान m के किसी कण का तरंग फलन निम्नलिखित है :

$$
\psi(x)=\left\{\begin{array}{cc}
\mathrm{N} x e^{-a x} & x>0 \text { के लिए } \\
0 & x<0 \text { के लिए }
\end{array}\right.
$$

यदि कण की कुल ऊर्जा शून्य हो, तो कण का स्थितिज ऊर्जा फलन निर्धारित कीजिए।
(ग) $\hat{\mathrm{H}}=\frac{\hat{\mathrm{P}}_{\mathrm{X}}^{2}}{2 m}+\hat{\mathrm{V}}(x)$ के लिए कम्यूटेटर $[\hat{x} \hat{\mathrm{P}} x, \hat{\mathrm{H}}]$ परिकलित कीजिए।
4. कोई एक भाग कीजिए : $10 \times 1=10$
(क) एक सममित अनंत विभव कूप के लिए विभव फलन निम्नलिखित है :

$$
\mathrm{V}(x)= \begin{cases}\infty, & x<-\mathrm{L} \text { के लिए } \\ 0, & -\mathrm{L}<x<\mathrm{L} \text { के लिए } \\ \infty, & x>\mathrm{L} \text { के लिए }\end{cases}
$$

इस विभव में स्थित द्रव्यमान m के एक कण के लिए काल स्वतंत्र श्रोडिंगर का हल कीजिए। सम और विषम पैरिटी के आइगेन फलन और उनके संगत आइगेन ऊर्जा प्राप्त कीजिए। $5+3+2$
(ख) निम्नलिखित विभव फलन :

$$
\mathrm{V}(x)=\left\{\begin{array}{rc}
0, & x<0 \text { के लिए } \\
\mathrm{V}_{0}, & 0 \leq x \leq a \text { के लिए } \\
0, & x>a \text { के लिए }
\end{array}\right.
$$

में द्रव्यमान m के किसी कण के लिए काल-स्वतंत्र श्रोडिंगर समीकरण का हल प्राप्त कीजिए, जब कण की ऊर्जा $\mathrm{E}<\mathrm{V}_{0}$ हो। परिसीमा प्रतिबंध लिखिये। परावर्तन गुणांक, संचरण गुणांक और सुरंगन लंबाई की परिभाषा दीजिए। $5+2+3$
5. कोई दो भाग कीजिए : $5 \times 2=10$
(क) निम्नलिखित संलयन अभिक्रिया का (MeV में)
Q-मान परिकलित कीजिए जिसमें दो ड्यूटेरॉन संलयित होकर एक ट्राइटियम (tritium) और एक प्रोटॉन निर्मित करते हैं :

$$
{ }_{1}^{2} \mathrm{H}+{ }_{1}^{2} \mathrm{H} \rightarrow{ }_{1}^{3} \mathrm{H}+{ }_{1}^{1} \mathrm{H}
$$

P. T. 0.

मान लीजिए :
$m\left({ }_{1}^{2} \mathrm{H}\right)=2.0141029 u$,
$m\left({ }_{1}^{3} \mathrm{H}\right)=3.016049 u$ और
$m\left({ }_{1}^{1} \mathrm{H}\right)=1.008665 u$
$1 u=931.5 \mathrm{MeV} / c^{2}$.
(ख) व्याख्या कीजिए कि इलेक्ट्रॉन नाभिक में क्यों नहीं रह सकता।
(ग) प्राकृतिक रूप से प्राप्त नाभिकों के लिए न्यट्रॉन संख्या का प्रोटॉन संख्या के सापेक्ष आलेख खींचिए। इसकी विशेषताओं की व्याख्या कीजिए।

भौतिक नियतांक :

$$
\begin{aligned}
& h=6.626 \times 10^{-34} \mathrm{~J}-\mathrm{s} \\
& m_{e}=9.1 \times 10^{-31} \mathrm{~kg} \\
& m_{p}=1.6725 \times 10^{-27} \mathrm{~kg} \\
& m_{n}=1.6747 \times 10^{-27} \mathrm{~kg} \\
& c=3 \times 10^{8} \mathrm{~ms}^{-1} \\
& \hbar=1.054 \times 10^{-34} \mathrm{~J}-\mathrm{s} \\
& 1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}
\end{aligned}
$$

