BACHELOR'S DEGREE PROGRAMME Term-End Examination
 June, 2023 BMTC-134 : ALGEBRA

Time : 3 Hours
Maximum Marks : 100
Note: (i) There are eight questions in this paper.
(ii) Question No. 8 is compulsory.
(iii) Do any six questions from Question Nos. 1 to 7 .
(iv) Use of calculator is not allowed.

1. (a) Define an abelian group. Give an example of a non-abelian group. (You don't need to prove that your example is a group. You have to only prove that it is non-abelian). 3
P. T. 0.
(b) Define a subgroup of a group. Check whether :

$$
\mathrm{H}=\left\{\left[\begin{array}{lll}
0 & a & b \\
0 & c & d
\end{array}\right] a, b, c, d \in \mathbb{C}\right\}
$$

is a sub-group of the group of 2×3 matrices over \mathbb{C} under addition.
(c) Define a semigroup. Give an example of an infinite semigroup.2
(d) State Lagrange's theorem. What are the possible orders of subgroups of a group of order $12 ?$2
(e) Let $\mathrm{S}=\{1,2,3,4\}$ and * be the binary operation defined by $a * b=a$. Compute the Cayley table for (S, *). Is * commutative ? Is * associative ? Justify your answers.
2. (a) Let A be a 3×4 real matrix, B be a 4×2 real matrix and C be a 2×3 real matrix. Which of the following operations are defined ?
(i) $\mathrm{CA}+\mathrm{B}^{t}$
(ii) $\mathrm{AB}+\mathrm{C}^{t}$

For those operations that are defined, what is the order of the resulting matrix? 3
(b) Let $\alpha=(125), \beta=(1432) \in S_{5}$. Compute $\sigma=\alpha \cdot \beta^{-1}$. Write σ as a product of transpositions. What is the signature of σ ?
(c) If F is a field, show that $\mathrm{U}(\mathrm{F}[x])=\mathrm{F}^{*}$.
(d) Let $R=\mathbb{Z}_{20}$:
(i) Give, with justification, a nilpotent element in R.
(ii) Give, with justification, a zero divisor in R which is not nilpotent.
(iii) What is the order of $U(\mathrm{R})$?
P. T. O.
3. (a) Let R be a ring in which $a^{2}=a$ for all $a \in \mathrm{R}$. Show that $a=-a$ and R is commutative.
(b) Define an integral domain. Give an example of an integral domain which is not a field.
(c) Calculate the following: 3
(i) $\left(\overline{2} x^{3}+\overline{3} x^{2}+\overline{4} x+\overline{1}\right)+\left(\overline{3} x^{3}+\overline{4} x^{2}+\overline{2} x+\overline{3}\right)$ in $\mathbb{Z}_{5}[x]$.
(ii) $\left(\overline{3} x^{2}+\overline{2} x+\overline{6}\right) \cdot\left(\overline{3} x^{3}+\overline{4} x+\overline{5}\right)$ in $\mathbb{Z}_{7}[x]$.
(d) Show that, if G is a finite group and $a \in \mathrm{G}, \mathrm{o}(a) \mid \mathrm{o}(\mathrm{G})$. Further, show that $\alpha^{o(\mathrm{G})}=e$ for all $a \in \mathrm{G}$. Deduce the EulerFermat theorem $a^{\phi(n)} \equiv 1(\bmod n)$ for all $a, n \in \mathbb{N}, n \geq 2,(a, n)=1$.
4. (a) Let $\mathrm{R}=\left\{\left.\left[\begin{array}{ll}a & b \\ 0 & c\end{array}\right] \right\rvert\, a, b, c \in \mathbb{R}\right\}$. Check whether R is a subring of $M_{2}(\mathbb{R})$. Is R an ideal of $\mathrm{M}_{2}(\mathbb{R})$? Justify your answer.
(b) Find the gcd of the polynomials $x^{4}+3 x+2$ and $x^{3}+3 x^{2}+5 x+3$.
(c) If H and K are normal abelian subgroups of a group and if $\mathrm{H} \cap \mathrm{K}=\{e\}$, show that HK is abelian. Will the result be still true if we remove the condition that H and K are normal? Justify your answer. 6
5. (a) Let R be the $\operatorname{ring}(\wp(\mathrm{X}), \Delta, \cap)$, $\mathrm{S}=(\wp(Y), \Delta, \cap)$, where X is a non-empty set with a proper non-empty subset Y. Let $\phi: \mathrm{R} \rightarrow \mathrm{S}$ be defined by $\phi(\mathrm{A})=\mathrm{A} \cap \mathrm{Y}$ for all $\mathrm{A} \subset \mathrm{X}$. Prove that ϕ is a ring homomorphism. Is ϕ surjective ? Justify your answer.
(b) Let F be a field and let $f(x) \in \mathrm{F}[x]$ be irreducible in $\mathrm{F}[x]$. Show that the ideal $\langle f(x)\rangle$ is a maximal ideal in $\mathrm{F}[x]$. Use this to deduce that $\mathbb{Q}[x] /\left\langle x^{5}+6 x^{3}+12\right\rangle$ is a field.
(c) Define a normal subgroup. Give an example of normal subgroup of $\mathrm{GL}_{2}(\mathbb{R}) .2$
6. (a) Find the order of each of the elements in $\mathrm{U}(15)$. Is $\mathrm{U}(15)$ cyclic ? Justify your answer.
(b) Show that:

$$
\mathrm{G} / \mathrm{Z}(\mathrm{G}) \simeq \operatorname{Inn} \mathrm{G} .
$$

(c) Check whether or not $\langle\overline{3}\rangle$ is a maximal ideal in \mathbb{Z}_{9}.
7. (a) Let $S^{1}=\left\{z \in \mathbb{C}^{*}| | z \mid=1\right\}$ and $\mathrm{U}_{n}=\left\{z \in \mathbb{C}^{*} \mid z^{n}=1\right\}$ for $n \in \mathbb{N}$. Check that $\mathrm{U}_{n} \subseteq \mathrm{~S}^{1}$. Further, show that $\mathrm{U}_{n} \leq \mathrm{S}^{1} .3$
(b) Let R be ring (not necessarily commutative) and let I and J be ideal of R. Show that $I \cap J$ and $\mathrm{I}+\mathrm{J}=\{a+b \mid a \in \mathrm{I}, b \in \mathrm{~J}\}$ are ideals of R .
(c) Show that $\langle x, 5\rangle$ is not a principal ideal in $\mathbb{Z}[x]$.
8. Which of the statements are true and which are false ? Justify your answer with a short proof or a counter-example: 10
(a) Every subgroup of S_{3} is normal.
(b) Every abelian group is cyclic.
(c) In a ring with identity, the sum of any two units is a unit.
(d) If a field has characteristic p, p a prime, the field is finite.
(e) If every element in group has finite order, the group is finite.
P. T. o.

BMTC-134

कला स्नातक उपाधि कार्यक्रम

 सत्रात परीक्षाजून, 2023
बी.एम.टी.सी.-134 : बीजगणित
समय : 3 घण्टे
अधिकतम अंक : 100
नोट : (i) इस प्रश्न पत्र में आठ सवाल हैं।
(ii) सवाल संख्या 8 करना अनिवार्य है।
(iii) प्रश्न संख्या 1 से 7 में से कोई भी 6 सवाल कीजिए।
(iv) कैलकुलेटर प्रयोग करने की अनुमति नहीं है।

1. (क) एक अनबेली समूह को परिभाषित कीजिए। एक अनबेली समूह का उदाहरण दीजिए। (आपको आपका उदाहरण सम्ह स्थापित करने की जरूरत नहीं है, अनबेली स्थापित करना पर्याप्त है।) 3
(ख) एक समूह का उपसमूह परिभाषित कीजिए। जाँच कीजिए कि :

$$
\mathrm{H}=\left\{\left[\begin{array}{lll}
0 & a & b \\
0 & c & d
\end{array}\right] a, b, c, d \in \mathbb{C}\right\}
$$

योग के सापेक्ष \mathbb{C} पर 2×3 आव्यूहों का समूह का उपसमूह है।
(ग) एक अर्ध-समूह को परिभाषित कीजिए। एक अनन्त अर्ध-समूह का उदाहरण दीजिए। 2
(घ) लैग्रांज प्रमेय बताइए। एक कोटि 12 वाली समूह की उपसमूहों की कोटियाँ क्या हो सकती हं ? 2
(ड) मान लीजिए $\mathrm{S}=\{1,2,3,4\}$ और * द्वि-आधारी संक्रिया $a^{*} b=a$ द्वारा परिभाषित है। $(\mathrm{S}, *)$ को कैली सारणी बनाइए। क्या * क्रमविनिमेय है ? क्या * साहचर्य है ? अपने उत्तर की पुष्टि कीजिए। 6
P. T. O.
2. (क) मान लीजिए A एक 3×4 वास्तविक आव्यूह है, B एक 4×2 वास्तविक आव्यूह है और C एक 2×3 वास्तविक आव्यूह है। निम्नलिखित में से कौन-सी संक्रियाएँ साध्य हैं ?
(i) $\mathrm{CA}+\mathrm{B}^{t}$
(ii) $\mathrm{AB}+\mathrm{C}^{t}$

जो संक्रियाएँ परिभाषित हैं उनमें प्राप्त आव्यूह की कोटि क्या होगी ?
(ख) मान लीजिए $\alpha=\left(\begin{array}{ll}1 & 2\end{array}\right), \beta=\left(\begin{array}{lll}1 & 4 & 3\end{array}\right) \in S_{5}$.
$\sigma=\alpha \cdot \beta^{-1}$ परिकलित कीजिए। σ को पक्षान्तरण के

गुणनफल के रूप लिखिए। σ की चिन्हक क्या
है ?
(ग) यदि F एक क्षेत्र है, तो दिखाइए कि $\mathrm{U}(\mathrm{F}[x])=\mathrm{F}^{*}$.
(घ) मान लीजिए $\mathrm{R}=\mathbb{Z}_{20}$:
(i) पुष्टि क साथ R में एक शून्य भावो अवयव दीजिए।
(ii) पुष्टि क साथ R में एक शून्य का भागक दीजिए जो शून्य भावी न हो।
(iii) $\mathrm{U}(\mathrm{R})$ की कोटि क्या है ?
3. (क)मान लीजिए R एक वलय है जिसमें प्रत्येक $a \in \mathrm{R}$ के लिए $a^{2}=a ।$ दिखाइए कि $a=-a$ और R क्रमविनिमेय है। 5
(ख) एक पूर्णांकीय प्रान्त को परिभाषित कीजिए। एक पूर्णांकीय प्रान्त का उदाहरण दीजिए जो क्षेत्र न हो।2
(ग) निम्नलिखित को परिकलित कीजिए : 3
(i) $\mathbb{Z}_{5}[x]$ में

$$
\left(\overline{2} x^{3}+\overline{3} x^{2}+\overline{4} x+\overline{1}\right)+\left(\overline{3} x^{3}+\overline{4} x^{2}+\overline{2} x+\overline{3}\right)
$$

(ii) $\mathbb{Z}_{7}[x]$ में $\left(\overline{3} x^{2}+\overline{2} x+\overline{6}\right) \cdot\left(\overline{3} x^{3}+\overline{4} x+\overline{5}\right)$
P. T. O.
(घ) दिखाइए कि, यदि G एक परिमित समूह है और $a \in \mathrm{G}, \mathrm{o}(a)|\mathrm{o}(\mathrm{G})|$ आगे दिखाइए प्रत्येक $a \in \mathrm{G}$ के लिए $a^{o(G)}=e$ । ऑयलर-फर्मा प्रमेय, प्रत्येक

$$
\begin{array}{llr}
a, n \in \mathbb{N}, n \geq 2,(a, n)=1 & \text { के } & \text { लिए } \\
a^{\phi(n)} \equiv 1(\bmod n) & \text { भी दर्शाइए। } &
\end{array}
$$

4. (क) मान लीजिए $\mathrm{R}=\left\{\left.\left[\begin{array}{ll}a & b \\ 0 & c\end{array}\right] \right\rvert\, a, b, c \in \mathbb{R}\right\}$. जाँच कीजिए कि $\mathrm{R} \mathrm{M}_{2}(\mathbb{R})$ का उपवलय है। क्या R $\mathrm{M}_{2}(\mathbb{R})$ को गुणजावली है ? अपने उत्तर की पुष्टि कीजिए।
(ख) बहुपद $x^{4}+3 x+2$ और $x^{3}+3 x^{2}+5 x+3$ का gcd निकालिए।
(ग) यदि H और K एक समूह क प्रसामान्य आबेली उपसमूह हैं और $\mathrm{H} \cap \mathrm{K}=\{e\}$, तो दिखाइए कि HK आबेली है। यह निष्कर्ष प्रतिबन्ध, H और K प्रसामान्य होना चाहिए, क्या हटाने पर भी सत्य होगी ? अपने उत्तर की पुष्टि कीजिए।
5. (क)मान लीजिए वलय $(\wp(\mathrm{X}), \Delta, \cap)$, $\mathrm{S}=(\wp(Y), \Delta, \cap)$, जहाँ X अतिरिक्त समुच्चय है और Y, X की अतिरिक्त उपसमुच्चय है। मान लीजिए $\phi: \mathrm{R} \rightarrow \mathrm{S}$ सभी $\mathrm{A} \subset \mathrm{X}$ के लिए $\phi(\mathrm{A})=\mathrm{A} \cap \mathrm{Y}$ द्वारा परिभाषित है। दिखाइए कि ϕ एक वलय समाकारिता है। क्या ϕ आच्छादक है ? अपने उत्तर की पुष्टि कीजिए।
(ख) मान लीजिए F एक क्षेत्र है और $f(x) \in \mathrm{F}[x]$ $\mathrm{F}(x)$ में अखंडनीय है। दिखाइए कि $\langle f(x)\rangle$ एक उच्चिष्ठ गुणजावली है। इसका प्रयोग करके दिखाइए कि $\mathbb{Q}[x] /\left\langle x^{5}+6 x^{3}+12\right\rangle$ एक क्षेत्र है। 7
(ग) एक प्रसामान्य उपसमूह परिभाषित कीजिए। $\mathrm{GL}_{2}(\mathbb{R})$ का एक प्रसामान्य उपसमूह का उदाहरण दीजिए। 2
6. (क) $\mathrm{U}(15)$ में प्रत्येक अवयव की कोटि निकालिए। क्या $\mathrm{U}(15)$ चक्रीय है ? अपने उत्तर की पुष्टि कीजिए।
(ख) दिखाइए कि :

$$
G / Z(G) \simeq \operatorname{Inn} G \mid
$$

(ग) जाँच कीजिए कि $\langle\overline{3}\rangle \mathbb{Z}_{9}$ की उच्चिष्ठ गुणजावली है या नहीं।
7. (क) माना कि $\mathrm{S}^{1}=\left\{z \in \mathbb{C}^{*}| | z \mid=1\right\}$ और $\mathrm{U}_{n}=\left\{z \in \mathbb{C}^{*} \mid z^{n}=1\right\} \quad n \in \mathbb{N}$, जाँच कीजिए कि $\mathrm{U}_{n} \subseteq \mathrm{~S}^{1}$ । आगे दिखाइए कि $\mathrm{U}_{n} \leq \mathrm{S}^{1}$ । 3
(ख)मान लीजिए R एक वलय है। क्रमविनिमेय होना जरूरी नहीं है। मान लीजिए I और J, R की गुणजावलियाँ हैं। दिखाइए कि $\mathrm{I} \cap \mathrm{J}$ और $\mathrm{I}+\mathrm{J}=\{a+b \mid a \in \mathrm{I}, b \in \mathrm{~J}\} \quad \mathrm{R}$ को गुणजावर्लियाँ हैं।
(ग) दिखाइए कि $\langle x, 5\rangle \mathbb{Z}[x]$ में मुख्य गुणजावली नहीं है।
8. निम्नलिखित कथनों में से कौन-से कथन सत्य और कौन-से कथन असत्य हैं ? अपने उत्तर की पुष्टि एक लघु उपपत्ति या प्रति-उदाहरण द्वारा कोजिए :
(क) S_{3} का प्रत्येक उपसमूह प्रसामान्य है।
(ख) प्रत्येक आबेली समूह चक्रीय है।
(ग) एक तत्समकी वलय में दो मात्रक का योग मात्रक होता है।
(घ) यदि एक क्षेत्र का अभिलाक्षणिक p है, p अभाज्य है, तो क्षेत्र परिमित होता है।
(ङ) एक समूह में प्रत्येक अवयव का कोटि परिमित है तो समूह परिमित है।

