BACHELOR'S DEGREE PROGRAMME (BDP) (BSCG/BAG)

Term-End Examination

June, 2023

BMTC-131 : CALCULUS

Time : 3 Hours
Maximum Marks : 100
Note: (i) All questions/parts of Section A and Section B are compulsory.
(ii) Attempt any five questions from Section C.
(iii) Use of calculator is not allowed.

Section-A

1. Which of the following statements are true and which are false ? Give a short proof or a counter-example, whichever is appropriate, in support of your answer :
(i) If A, B and C are three sets, then :

$$
A \cap(B-C)=(A \cap B)-(A \cap C) .
$$

P. T. O.
(ii) $\lim _{x \rightarrow 0} \frac{3 x+2|x|}{5 x-3|x|}=\frac{2}{3}$.
(iii) $\frac{d}{d x}\left(\int_{1}^{2 x^{3}} \tan \theta d \theta\right)=6 x \tan \left(2 x^{3}\right)$.
(iv) $\frac{d}{d x}(\log |x|)=\frac{1}{x}(x \neq 0)$.
(v) The curve, $y=\frac{x+1}{x-2}$ has an oblique asymptote.
(vi) A cubic equation with real coefficients can be found, whose roots are $1,-1$ and $\sqrt{-1}$.
(vii) The maximum possible domain of a function f given by :

$$
\left.f(x)=\frac{\sqrt{5-x}}{\ln x} \text { is }\right] 0,5[
$$

(viii) If for a function $f,|f|$ is continuous, then f is also continuous.
(ix) $\sin x$ has only one point of inflection in] $0,2 \pi$ [.
(x) $\quad \int_{\pi / 6}^{\pi / 4} \cot x d x=\ln 2$.

Section-B

2. (a) Find $\frac{d y}{d x}$ for the following :
(i) $y=\sqrt{\frac{1+x^{2}}{1-x^{2}}}$ at $x=\frac{1}{2}$
(ii) $y=\cot ^{-1}\left(\sqrt{x^{2}-1}\right)+\sec ^{-1} x(x>0)$
(b) Evaluate :

$$
\int \frac{x^{4}+x^{2}+1}{2\left(x^{2}+1\right)} d x
$$

3. (a) If $y=x^{2} e^{x}$, prove that:

$$
y_{n}=\frac{n(n-1)}{2} y_{2}-n(n-2) y_{1}+\frac{(n-1)(n-2)}{2} y .
$$

(b) If the sum of two roots of the equation : 6

$$
4 x^{4}+8 x^{3}+13 x^{2}+2 x+3=0
$$

is zero, find all its roots.
4. (a) If $\mathrm{I}_{n}=\int_{0}^{\pi / 4} \tan ^{n} \theta d \theta(n>1)$, then show that:

$$
n\left(\mathrm{I}_{n-1}+\mathrm{I}_{n+1}\right)=1
$$

(b) Evaluate :

$$
\int_{-3}^{3}|x-1| d x
$$

(c) Find $\frac{d y}{d x}$, when $y=(\ln x)^{x}+\left(\sin ^{-1} x\right)^{x} . \quad 4$

Section-C

5. (a) Find the area bounded by the curve : 4

$$
r=4 \cos \theta
$$

(b) Evaluate :

$$
\lim _{x \rightarrow 0} \frac{\tan x \sec ^{2} x-x}{x^{2} \tan x}
$$

(c) Examine, whether the equation, $x^{3}-10 x+8=0$ has a real root in the
interval, $[-1,2]$, or not.
6. Trace the curve, $y^{2}(3-x)=x^{3}$, stating all the properties needed to trace it.
7. (a) Check whether the relation:

$$
\mathrm{R}=\{(m, n) \in \underline{\mathrm{N}} \times \underline{\mathrm{N}}: m \text { is a factor of } n\}
$$

is an equivalence relation or not.
(b) If the function $f: \underline{\mathrm{R}} \rightarrow \underline{\mathrm{R}}$ be given by $f(x)=x^{2}+2$ and g be a function given by $g(x)=\frac{x}{x-1}, x \neq 1$, then find $f \circ g, g$ o f and hence find $(f \circ g)(2)$ and $(g \circ f)(-3)$.
(c) Evaluate :

$$
\lim _{x \rightarrow 2}\left\{\frac{1}{x-2}-\frac{1}{x^{2}-3 x+2}\right\}
$$

8. (a) Find the length of the arc of the parabola, $x^{2}=12 y$, cut off by its latus rectum.
(b) For the function f defined by $f(x)=3 x-2$ over $[0,1]$, verify :

$$
\mathrm{L}(\mathrm{P}, f) \leq \mathrm{U}(\mathrm{P}, f)
$$

where the partition P is $\left\{0, \frac{1}{3}, \frac{2}{3}, 1\right\}$.
9. (a) Using the $\varepsilon-\delta$ definition of limit, prove that:

$$
\lim _{x \rightarrow 1}\left(2 x^{2}-3 x^{3}\right)=-1
$$

(b) Expand $e^{2 x}$ in powers of $(x-1)$ upto four terms.
10. (a) Determine the values of a and b for which the function f defined by :

$$
f(x)=\left\{\begin{array}{cl}
a x^{2}+b ; & \text { if } x \leq 0 \\
-\frac{3}{x^{2}+1}+1 ; & \text { if } x>0
\end{array}\right.
$$

is continuous. Check also derivability at $x=0$.
(b) By considering the function f given by: 5

$$
f(x)=(x-2) \ln x \text { on }[1,2]
$$

show that the equation, $x \ln (e x)=2$ is satisfied by at least one value of x lying between 1 and 2 .

BMTC-131

स्नातक उपाधि कार्यक्रम
 (बी.डी.पी.) (बी.एस.सी.जी./बी.ए.जी)
 सत्रांत परीक्षा

जून, 2023
बी.एम.टी.सी.-131 : कलन
समय : 3 घण्टे
अधिकतम अंक : 100
नोट : (i) भाग 'अ' और भाग 'ब' के सभी प्रश्न/प्रश्नों के सभी भाग अनिवार्य हैं।
(ii) भाग 'स' से कोई पाँच प्रश्न कीजिए।
(iii) कैलकुलेटर का प्रयोग करने की अनुमति नहीं है।

भाग-अ

1. निम्नलिखित कथनों में से कौन-से कथन सत्य और कौन-से असत्य हैं? अपने उत्तर के पक्ष में एक संक्षिप्त उपपत्ति या प्रति उदाहरण दीजिए :
(i) यदि A, B और C तीन समुच्चय हैं, तो :

$$
\mathrm{A} \cap(\mathrm{~B}-\mathrm{C})=(\mathrm{A} \cap \mathrm{~B})-(\mathrm{A} \cap \mathrm{C})
$$

P. T. O.
(ii) $\lim _{x \rightarrow 0} \frac{3 x+2|x|}{5 x-3|x|}=\frac{2}{3}$
(iii) $\frac{d}{d x}\left(\int_{1}^{2 x^{3}} \tan \theta d \theta\right)=6 x \tan \left(2 x^{3}\right)$
(iv) $\frac{d}{d x}(\log |x|)=\frac{1}{x}(x \neq 0)$
(v) वक्र $y=\frac{x+1}{x-2}$ की एक तिर्यक अनंतस्पर्शी है।
(vi) मूलों $1,-1$ और $\sqrt{-1}$ वाली एक त्रिघात समीकरण, जिसके गुणांक वास्तविक हं, प्राप्त की जा सकती है।
(vii) $f(x)=\frac{\sqrt{5-x}}{\ln x}$ द्वारा परिभाषित फलन f का अधिकतम संभावित प्रांत $] 0,5$ [है।
(viii)एक फलन f के लिए यदि $|f|$ सतत् है तो f भी सतत् होगा।
(ix) $\sin x$ का केवल एक नतिपरिवर्तन बिन्दु $] 0,2 \pi[$ में है।
(x) $\int_{\pi / 6}^{\pi / 4} \cot x d x=\ln 2$

भाग-ब

2. (क) निम्नलिखित के $\frac{d y}{d x}$ ज्ञात कीजिए :
(i) $y=\sqrt{\frac{1+x^{2}}{1-x^{2}}}, x=\frac{1}{2}$ पर
(ii) $y=\cot ^{-1}\left(\sqrt{x^{2}-1}\right)+\sec ^{-1} x(x>0)$
(ख) $\int \frac{x^{4}+x^{2}+1}{2\left(x^{2}+1\right)} d x$ का मूल्यांकन कीजिए।
3. (क) यदि $y=x^{2} e^{x}$ है तो सिद्ध कीजिए कि :

$$
y_{n}=\frac{n(n-1)}{2} y_{2}-n(n-2) y_{1}+\frac{(n-1)(n-2)}{2} y
$$

(ख) समीकरण $4 x^{4}+8 x^{3}+13 x^{2}+2 x+3=0$ के दो मूल्यों का योगफल शून्य है, तो सभी मूल ज्ञात कीजिए।
4. (क) यदि $\mathrm{I}_{n}=\int_{0}^{\pi / 4} \tan ^{n} \theta d \theta(n>1)$ है तो दर्शाइए कि $n\left(\mathrm{I}_{n-1}+\mathrm{I}_{n+1}\right)=1$ ।
(ख) $\int_{-3}^{3}|x-1| d x$ का मूल्यांकन कीजिए। 3
(ग) यदि $y=(\ln x)^{x}+\left(\sin ^{-1} x\right)^{x}$ है, तो $\frac{d y}{d x}$ ज्ञात कीजिए।

भाग-स

5. (क) वक्र $r=4 \cos \theta$ द्वारा परिबद्ध क्षेत्रफल ज्ञात कीजिए। 4
(ख) $\lim _{x \rightarrow 0} \frac{\tan x \sec ^{2} x-x}{x^{2} \tan x}$ का मूल्यांकन कीजिए। 3
(ग) जाँच कीजिए कि समीकरण $x^{3}-10 x+8=0$ का अंतराल $[-1,2]$ में एक वास्तविक मूल है या नहीं।
6. अनुरेखण में प्रयोग किये गये सभी गुण-धर्मों को लिखते हुए वक्र $y^{2}(3-x)=x^{3}$ का अनुरेखण कीजिए। 10
7. (क) जाँच कीजिए कि सम्बन्ध $\mathrm{R}=\{(m, n) \in \underline{\mathrm{N}} \times \underline{\mathrm{N}}: m, n \quad$ का एक विभाजक है।\} तुल्यता सम्बन्ध है या नहीं। 3
(ख) यदि $f(x)=x^{2}+2$ द्वारा परिभाषित फलन $f: \underline{\mathrm{R}} \rightarrow \underline{\mathrm{R}}$ और $g(x)=\frac{x}{x-1}, x \neq 1 \quad$ द्वारा परिभाषित फलन f हैं तो $f \circ g, g \circ f$ ज्ञात कीजिए। इस प्रकार $(f \circ g)(2)$ और $(g \circ f)(-3)$ भी ज्ञात कीजिए। 4
(ग) $\lim _{x \rightarrow 2}\left\{\frac{1}{x-2}-\frac{1}{x^{2}-3 x+2}\right\} \quad$ का मूल्यांकन कीजिए।
8. (क) परवलय $x^{2}=12 y$ की नाभिलंब द्वारा काटी गयी चाप की लंबाई ज्ञात कीजिए। 6
(ख) अंतराल $[0,1]$ पर $f(x)=3 x-2$ द्वारा परिभाषित फलन f के लिए सत्यापित कीजिए;

$$
\begin{aligned}
& \mathrm{L}(\mathrm{P}, f) \leq \mathrm{U}(\mathrm{P}, f) \text { जहाँ विभाजन } \mathrm{P}, \\
& \left\{0, \frac{1}{3}, \frac{2}{3}, 1\right\} \text { है। }
\end{aligned}
$$

9. (क) सीमा की $\varepsilon-\delta$ परिभाषा का प्रयोग करके सिद्ध कीजिए कि :

$$
\lim _{x \rightarrow 1}\left(2 x^{2}-3 x^{3}\right)=-1
$$

(ख) $e^{2 x}$ का $(x-1)$ की घातों में चार पदों तक विस्तार कीजिए।
10. (क) a और b के उन मानों को ज्ञात कीजिए जिनके

लिए $\quad f(x)=\left\{\begin{array}{cl}a x^{2}+b, & x \leq 0 \\ -\frac{3}{x^{2}+1}+1, & x>0\end{array}\right.$
द्वारा परिभाषित फलन f सतत् है। $x=0$ पर f की अवकलनीयता की जाँच भी कीजिए। 5
(ख) अंतराल $[1,2]$ पर $f(x)=(x-2) \ln x \quad$ द्वारा परिभाषित फलन f लीजिए और दर्शाइए कि समीकरण $x \ln (e x)=2, x$ के 1 और 2 के बीच कम से कम एक मान को सन्तुष्ट करती है। 5

