Ph. D. IN STATISTICS (PHDSTAT)

Term-End Examination June, 2022

RST-004: ADVANCES IN STATISTICS

Time: 3 Hours Maximum Marks: 100

Note: (i) Question No. 1 is compulsory.

- (ii) Attempt any four questions from Q. Nos.2 to 7.
- (iii) Non-programmable scientific calculator is allowed.
- (iv) Symbols have their usual meanings.
- 1. (a) State whether the following statements are True *or* False. Give reasons in support of your answer: $5\times2=10$
 - (i) The test statistic for testing the significance of regression coefficient

"b" is
$$\mathbf{F} = \frac{\hat{b}}{\operatorname{SE}(\hat{b})}$$
.

[2] RST-004

- (ii) Residual in regression analysis is the absolute difference between the observed value of the response variable and the predicted value of the response variable.
- (iii) Uniform priors come under the category of non-informative priors.
- (iv) Posterior distribution provides prior information about the parameter.
- (v) In residual plot, the residual values are plotted against the observed values of the response variable.
- (b) Write short notes on the coefficient of determination (R) and adjusted \mathbb{R}^2 . 10
- Describe various methods of selection of variable in regression model.
- 3. (a) Let $X_1, X_2,, X_n$ be a random sample taken from normal distribution with mean μ and variance σ^2 . Find Jeffrey's prior. 15
 - (b) Describe inversion method of generating random numbers. 5

- 4. (a) Describe accept-reject method of generating observations. Also write its algorithm.
 - (b) Differentiate between classical and Bayesian approaches. 5
 - (c) Define prior and posterior distributions in Bayesian analysis.5
- 5. Let $X_1, X_2,, X_n$ be a random sample taken from Poisson distribution with parameter λ . If prior distribution of λ follows gamma distribution with parameters α and β , then find:
 - (i) posterior distribution of λ
 - (ii) Bayes estimate of λ under SELF and LINEX loss functions.
- 6. A company wants to test the effect of age and gender on the productivity (in terms of units produced by the employee per month). The HR manager has taken a random sample of 10 employees and collect information as follows:

Employee	Productivity (in units)	Age (in years)	Gender (0 for female and 1 for male)
1	35	40	1
2	26	34	0
3	25	28	0
4	36	34	1
5	21	26	1
6	26	31	1
7	36	38	1
8	27	31	1
9	25	31	0
10	30	38	0

Fit a regression model. Also estimate productivity of a male employee of 35 years.

- 7. Write short notes on the following: 20
 - (i) Residual plot
 - (ii) Multiple linear regression
 - (iii) Assumptions of regression analysis

RST-004