# POST GRADUATE DIPLOMA IN APPLIED STATISTICS (PGDAST) Term-End Examination 

June, 2022

## MSTE-002 : INDUSTRIAL STATISTICS—II

## Time : 3 Hours <br> Maximum Marks : 50

Note: (i) Question No. 1 is compulsory.
(ii) Attempt any four questions from the remaining Question nos. 2 to 7.
(iii) Use of scientific calculator (nonprogrammable) is allowed.
(iv)Use of Formulae and Statistical Tables booklet for PGDAST is allowed.
(v) Symbols have their usual meanings.
P. T. 0.

1. State whether the following statements are True or False. Give reasons in support of your answer :
$5 \times 2=10$
(a) For the following set of equations, the possible number of basic solution is 6 :

$$
\begin{aligned}
& x_{1}+2 x_{2}+3 x_{3}+4 x_{4}=5 \\
& 4 x_{1}+3 x_{2}+2 x_{3}+x_{4}=1
\end{aligned}
$$

(b) The inventory model given below shows that the demand is uniform :

(c) In forward method of selection of variables in regression analysis, each time a new variable is entered into the model and all previous variables in the model are checked for continued importance.
(d) In ratio to trend method of seasonal component analysis, we find the trend by moving average method.
(e) If a researcher obtained a residual plot as given below :

then we can say that there exists an error in the regression calculation.
2. (a) A manufacturer produces two different models : X and Y , of the same product. Model X makes a contribution of ₹ 50 per unit and model Y, ₹ 30 per unit towards total profit. Raw materials $r_{1}$ and $r_{2}$ are required for production. At least 18 kg of $r_{1}$ and 12 kg of $r_{2}$ must be used daily. Also, at most 34 hours of labour are to be utilized. A quantity of 2 kg of $r_{1}$ is needed for model X and 1 kg of $r_{1}$ for model Y. For each of X and $\mathrm{Y}, 1 \mathrm{~kg}$ of $r_{2}$ is required. It takes 3 hours to manufacture model X and 2 hours to manufacture model Y. How many units of each model should be produced to maximize the profit?
P. T. O.
(b) Find all basic solutions for the system of equations:

$$
\begin{gathered}
x_{1}+2 x_{2}+x_{3}=4 \\
2 x_{1}+x_{2}+5 x_{3}=5
\end{gathered}
$$

3. (a) A department has five employees with five jobs to be performed. The time (in hours) each man will take to perform each job is given in the following effectiveness matrix :

Employee

|  |  | I | II | III | IV | V |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Jobs | A | 10 | 5 | 13 | 15 | 16 |
|  | B | 3 | 9 | 18 | 13 | 6 |
|  | C | 10 | 7 | 2 | 2 | 2 |
|  | D | 7 | 11 | 9 | 7 | 12 |
|  | E | 7 | 9 | 10 | 4 | 12 |

How should the jobs be allocated so as to minimize the total man-hours?
(b) A road transport company has one reservation clerk on duty at a time. He handless information of bus schedules and makes reservations. Customers arrive according to Poisson distribution with rate of 8 per hour and the clerk can service 12 customers on an average per hour :
(i) What is the probability that the clerk being idle?
(ii) Find the average number of customers waiting for the service in the system.
4. Using the data given in the following table, find the regression coefficients and fit the regression equation :
(where $\mathrm{X}_{2}$ indicates types of machines : $A$ and B)

| Y | $\mathrm{X}_{1}$ | $\mathrm{X}_{2}$ |
| :---: | :---: | :---: |
| 10 | 30 | A |
| 10 | 20 | A |
| 20 | 50 | A |
| 15 | 10 | B |
| 15 | 10 | B |
| 10 | 10 | B |
| 20 | 30 | B |
| 25 | 40 | B |
| 30 | 20 | B |
| 15 | 10 | B |
| 20 | 40 | A |

Also find the regression equations for each machine.
P. T. 0.
5. Apply the ratio to moving average method for calculating the seasonal indices for the time series data of production of a commodity (in thousand) of a firm :

|  | $\mathrm{Q}_{1}$ | $\mathrm{Q}_{2}$ | $\mathrm{Q}_{3}$ | $\mathrm{Q}_{4}$ |
| :---: | :---: | :---: | :---: | :---: |
| 2015 | 480 | 410 | 600 | 650 |
| 2016 | 580 | 520 | 680 | 740 |
| 2017 | 600 | 560 | 750 | 780 |
| 2018 | 630 | 590 | 800 | 840 |

Also find deseasonalised values.
6. (a) Consider an AR (2) process given by :

$$
\mathrm{X}_{t}=\mathrm{X}_{t-1}-0.5 \mathrm{X}_{t-2}+a_{t}
$$

Verify whether the series is stationary or not. Also find $\rho_{1}$ and $\rho_{2}$.
(b) Find an initial basic feasible solution for given transportation problem by using Vogel's approximation method :

|  | $\mathrm{D}_{1}$ | $\mathrm{D}_{2}$ | $\mathrm{D}_{3}$ | $\mathrm{D}_{4}$ | Supply |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{S}_{1}$ | 11 | 13 | 17 | 14 | 250 |
| $\mathrm{~S}_{2}$ | 16 | 18 | 14 | 10 | 300 |
| $\mathrm{~S}_{3}$ | 21 | 24 | 13 | 10 | 400 |
| Demand | 200 | 225 | 275 | 250 |  |

7. (a) It is given that:
$\overline{\mathrm{X}}=6.97, \mathrm{SS}_{x}=6.40, \quad n=10, \quad \sigma^{2}=5.42$,
$\mathrm{SS}_{x y}=61.81$
On the basis of the above information :
(i) Find Var $\hat{a}$ and Var $\hat{b}$.
(ii) Test the hypothesis at $5 \%$ level of significance:

$$
\begin{equation*}
\mathrm{H}_{0}: b=8 \text { against } \mathrm{H}_{1}: b \neq 8 . \tag{6}
\end{equation*}
$$

(b) Find the sequence that minimizes the total elapsed time required to complete the following tasks on two machines :

| Task | Machine I | Machine II |
| :---: | :---: | :---: |
| 1 | 5 | 2 |
| 2 | 7 | 6 |
| 3 | 3 | 7 |
| 4 | 4 | 5 |
| 5 | 6 | 9 |

Also calculate the idle time on Machine I and Machine II.

