MST-004

POST GRADUATE DIPLOMA IN APPLIED STATISTICS (PGDAST)

Term-End Examination

June, 2022

MST-004 : STATISTICAL INFERENCE

Time : 3 hours

Maximum Marks : 50

Note :

- (i) Question no. 1 is compulsory.
- *(ii)* Attempt any **four** questions from the remaining questions.
- (iii) Use of scientific (non-programmable) calculator is allowed.
- (iv) Use of "Formulae and Statistical Tables Booklet for PGDAST" is allowed.
- (v) Symbols have their usual meanings.
- 1. State whether the following statements are *True* or *False*. Give reasons in support of your answers. $5 \times 2=10$
 - (a) The lifespan (in '00 hours) of five batteries are 40, 42, 44, 46 and 48. There are 15 samples of size 2 possible without replacement.
 - (b) The number of runs in the sequence MMNMMNNMNNMMNN is 7.

(c) If X_1 , X_2 and X_3 is a random sample of size 3 taken from a population with mean μ and variance σ^2 , then estimator

$$T = \frac{3X_1 + 2X_2 - X_3}{5}$$

is an unbiased estimator for μ .

(d) If the probability density function of a random variable X which follows F-distribution is

$$f(x) = \frac{1}{(1+x)^2}; 0 < x < \infty,$$

then the degrees of freedom of the distribution will be (2, 2).

- (e) Accepting the null hypothesis (H_0) when it is not true, is called Type-I error.
- **2.** Consider a population consisting of 5 villages, the areas (in hectares) of which are given below :

Village	Α	В	С	D	Ε
Area	460	400	480	500	420

- (a) How many samples of size 3 are possible without replacement? Write them.
- (b) Compute the mean of all samples of size 3 obtained in (a), and set up the sampling distribution of the same.
- (c) Compute the expected value and standard error of the sample mean. 3+4+3

3. (a) An industry produces a particular type of items. To estimate the variance of the weight of the items, an analyst of the industry takes a random sample of 10 items. He measures their weights (in kg). The data so obtained are given as follows :

48, 50, 62, 75, 80, 60, 70, 56, 52, 77

Obtain 99% confidence interval for the variance of the weight of all items.

(b) It is known that the number of weekly accidents occuring on one km stretch of a particular road follows Poisson distribution with parameter λ. Determine the maximum likelihood estimator of the parameter λ and compute its estimated value on the basis of the following data :

Number of Accidents	Frequency
0	4
1	6
2	10
3	8
4	4

MST-004

P.T.O.

5

5

4. (a) A statistician wishes to test the hypothesis that standard deviation of weight of the students for Batch A is greater than that of Batch B. The data obtained from both batches are as follows :

Batch A	Batch B
n ₁ = 9	$n_2 = 11$
$\overline{\mathbf{x}} = 59$	$\overline{y} = 60$
$\Sigma (\mathbf{x}_{i} - \overline{\mathbf{x}})^{2} = 26$	$\Sigma (y_i - \overline{y})^2 =$

Is there enough evidence to support the claim at 5% level of significance ?

36

5

5

(b) A mobile manufacturer claims that at most 10% of the mobiles produced are defective. A company wants to purchase the mobiles but before that it is decided to test a sample of 200 mobiles. If there are 30 defective mobiles among these 200 mobiles, can we agree with the manufacturer's claim at 1% level of significance ?

5. (a) A cricket coach has developed a new technique of bowling a reverse swing. To determine how well this method works, the coach selected two teams, say, A and B, of 12 players in each team. Each player of team A was asked to bowl 60 balls using the old technique, while each player of team B, by the new technique. The number of successful attempts for each player of team A and B is given in the following table :

[
Team A	Team B
40	45
30	60
55	50
35	60
40	35
40	50
30	55
40	60
50	50
45	50
40	40
35	55

Examine whether the average successful attempts by the two methods are the same at 1% level of significance, using suitable non-parametric test. Also, write the conclusion.

(b) Differentiate between Parametric and Non-parametric tests.

7

3

6. (a) Write any two applications of t-distribution.

The probability density function (pdf) of chi-square distribution is given by

$$f(\chi^2) = \frac{1}{96} e^{-\chi^2/2} (\chi^2)^3; \ 0 < \chi^2 < \infty.$$

- (i) What is the degree of freedom of this chi-square distribution ?
- (ii) What are the mean and variance of the chi-square distribution ?
- Show that the sample mean X is an (b) unbiased estimator of the population mean µ. To determine the average amount of money spent by the students of a university textbooks, a random sample of on 10 students was chosen at random. The amounts spent (in \mathbf{E}) on the textbooks were as follows :

1000, 1520, 5600, 7110, 2270, 1460, 4220, 6800, 520, 2120

What is the point estimate of the average amount spent by all students of the university?

(c) Write any four properties of MLE.

3 2

5

7. (a) A bath soap manufacturing company claims that the average weight of the bath soap is 100 g. For testing the claim, a sample of 9 soaps is selected at random under normal conditions. The data is given in the following table :

Weight (in grams)	
103	
98	
99	
101	
96	
97	
96	
98	
103	

Assuming that the weights of soaps are normally distributed, use a suitable test for testing the claim at 5% level of significance, and draw conclusion.

(b) The following table gives the number of aircraft accidents that occurred during the various days of the week :

Days	No. of Accidents
Sunday	14
Monday	15
Tuesday	08
Wednesday	20
Thursday	11
Friday	09
Saturday	14

Find whether the accidents are uniformly distributed over the week at 5% level of significance.

5