P.G. DIPLOMA IN ANALYTICAL CHEMISTRY (PGDAC)

Term-End Examination

June, 2022

MCH-003 : SPECTROSCOPIC METHODS

Time : 3 hours

Maximum Marks: 75

Note: Answer any *five* questions. All the questions carry equal marks.

1. Answer any *three* of the following :

(a)	Explain the difference between line spectrum and band spectrum. Draw a schematic diagram of emission band spectrum of a molecule.	5
(b)	Draw a generalised molecular orbital energy level diagram and show all the possible transitions in an organic compound. Explain all the transitions.	5

- (c) Discuss the applications of fluorescence and phosphorescence.
- (d) Explain the spectral line width schematically. Write the reasons of line broadening.
- (e) Draw a schematic diagram of ultrasonic nebulizer and explain its principle.

5

5

5

- 2. (a) Define wavelength. number, wave frequency and energy and mention their units. Calculate energy for wavelength of 500 nm. $(h = 6.63 \times 10^{-34} \text{ Js, } c = 3 \times 10^8 \text{ ms}^{-1})$
 - (b) Explain the stretching and bending modes of vibrations for typical AB_2 molecules. How would these differ in CO_2 and SO_2 molecules ?

5

5

5

5

5

5

- (c) Draw a schematic diagram of a double beam UV-visible spectrophotometer. Discuss its advantages over single beam spectrophotometer.
- **3.** (a) Explain the Particle theory of Raman Effect, with the help of schematic representation of the energy changes associated with the excitation, Rayleigh scattering and Raman scattering.
 - (b) Differentiate between phosphorescence and fluorescence. Draw Jablonski diagram showing these two phenomena.
 - (c) State Franck-Condon principle and explain its implications. Briefly discuss the non-radiative deactivation of excited state of molecule.

2

4.	(a)	Explain the relationship between structure of molecules and their characteristic fluorescence. Explain this phenomenon in pyridine molecule.	5
	(b)	Define quantum yield, with the help of mathematical expression.	5
	(c)	Predict the important spectral signals expected in the IR and 1 H NMR of ethyl ethanoate <i>or</i> benzoic acid.	5
5.	(a)	What are the characteristics of atomic spectra ? Briefly explain them, with the help of a typical spectrum.	5
	(b)	Draw schematic structure of flame showing various zones. Explain all the reactions in flames.	5
	(c)	Write the important applications of AAS in the area of environmental analysis.	5
6.	(a)	What is the origin of atomic fluorescence ? List the various types of atomic fluorescence transitions.	5
	(b)	Explain atomisers. Write the disadvantages of flame atomisers.	5
	(c)	Differentiate between single beam and double beam flame atomic absorption	
		spectrophotometer.	5

3

MCH-003

P.T.O.

- (a) Explain the role of organic solvents in the preparation of solution for atomic absorption spectrophotometry.
 - (b) Describe the principle of atomic emission spectrometry. Discuss the role of plasma sources in AES.

5

5

5

5

5

5

- (c) Draw a schematic layout of different components of an ICP-AES spectrometer and discuss the role of monochromators in ICP-AES.
- 8. (a) Define nuclear magnetic moment in terms of spin angular momentum (I) and nuclear Bohr Magneton. Which of the following nuclei are NMR active and why?

²D, ¹³C, ¹⁸O, ³¹P

- (b) Define spin-spin coupling. Write down possible spin orientation of two protons $in - CH_2$ group.
- (c) Explain the theory of mass spectrometry. Define isotopic peaks and explain it, with the help of mass spectrum of CH_3OH .

4