M. Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) [M. Sc. (MACS)] Term-End Examination
 June, 2022
 MMTE-005 : CODING THEORY

Time : 2 Hours
Maximum Marks : 50
Note: (i) Answer any four questions from question nos. 1 to 5.
(ii) Question No. $\boldsymbol{6}$ is compulsory.
(iii) All questions carry equal marks.
(iv) Use of calculator is not allowed.

1. (a) Consider the [7, 4] binary code with the following generator matrix :

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right]
$$

(i) Write the parity check matrix.
P. T. O.
(ii) Find four information sets in the above code.
(iii) Find one set of 4 co-ordinates that do not form an information set.
(b) (i) Find the dimension and minimum weight of the Reed-Muller code $\mathrm{R}(2,4)$.
(ii) Find the generator matrix of the ReedMuller code R (3, 4).
(iii) The parity check matrix of [15, 11] binary Hamming code is given below :
$\left[\begin{array}{lllllllllllllll}0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1\end{array}\right]$

Assume that the received vector is $(0,0,0,0,1,0,0,0,0,0,1,1,0,0,1)$. Find the correct decoded message. 6
2. (a) (i) Show that the polynomial $f(x)=x^{3}+x+1 \quad$ is irreducible in $\mathbf{F}_{2}[x]$.
(ii) Let $\alpha=x+\langle f(x)\rangle \in \frac{\mathbf{F}_{2}[x]}{\langle f(x)\rangle}$. Write every element of $\frac{\mathbf{F}_{2}[x]}{\langle f(x)\rangle}$ as a power of α.
(iii) Write $\alpha^{5}+\alpha^{4}+\alpha^{2}+1$ as a power of α, where α is as in (i).
(b) Find all the codewords of the cyclic code with generator matrix :

$$
\left[\begin{array}{lllllll}
1 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right]
$$

Find the minimum weight of the code. How errors can the code detect and how many it correct?
3. (a) Construct all possible BCH codes over \mathbf{F}_{8} of length 8 . 6
(b) Let C be any $\left[n, \frac{n-1}{2}\right]$ cyclic code over \mathbf{F}_{q}. Then show that C is self orthogonal if and only if C is an even like duadic code whose splitting is given by μ_{-1}.
4. (a) Let A_{i} and A_{i}^{\perp} be the number of codewords of weight in C and C_{1}^{\perp} respectively. Let C be a binary code generated by $\left[\begin{array}{llllll}1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1\end{array}\right]$. For $0 \leq i \leq b$, find A_{i} and A_{i}^{\perp}.
(b) Show that \mathbf{Z}_{4} linear codes with generator matrices :

$$
\begin{aligned}
& \mathrm{G}_{1}
\end{aligned}=\left[\begin{array}{llll}
1 & 0 & 0 & 3 \\
0 & 1 & 2 & 2 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

are monomially equivalent.
5. (a) Find the convolutional code for the message 1101. The convolutional encoder is given below :

(b) Let C be the narrow-sense BCH code of designed distance $\delta=5$, which has a defining set $T=\{1,2,3,4,6,8,9,12\}$. Let α be a primitive 15 th root of unity, where $\alpha^{4}=1+\alpha$ and the generator polynomial C be $g(x)=1+x^{4}+x^{6}+x^{7}+x^{8}$. If $y(x)=x+x^{4}+x^{7}+x^{8}+x^{11}+x^{12}+x^{13}$ is received. You can use the following table : 6

0000	0	1000	α^{3}	1011	α^{7}	1110	α^{11}
0001	1	0011	α^{4}	0101	α^{8}	1111	α^{12}
0010	α	0110	α^{5}	1010	α^{9}	1101	α^{13}
0100	α^{2}	1100	α^{6}	0111	α^{10}	1001	α^{14}

6. Which of the following statements are true and which are false ? Justify your answer with a short proof or counter-example : $2 \times 5=10$
(a) Every binary Hamming code is a cyclic code.
P. T. O.
(b) $\mathrm{R}_{q, n}=\mathbf{F}_{q}[\mathrm{X}] /\left\langle\mathrm{X}^{n}-1\right\rangle$ is a field if and only if $n=1$.
(c) The degree of a generator polynomial of a cyclic code is equal to the dimension of the code.
(d) There is no self-dual code of length 5 .
(e) There is no $(5,3,4) \mathrm{LDPC}$ code.
