No. of Printed Pages : 6

MMTE-005

M. Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) [M. Sc. (MACS)] Term-End Examination June, 2022 MMTE-005 : CODING THEORY

Time : 2 Hours

Maximum Marks : 50

- Note: (i) Answer any four questions from question nos. 1 to 5.
 - (ii) Question No. 6 is compulsory.
 - (iii) All questions carry equal marks.
 - (iv) Use of calculator is **not** allowed.
- 1. (a) Consider the [7, 4] binary code with the following generator matrix : 4

1	0	0	0	0	1	1
0	1	0	0	1	0	1
0	0	1	0	1	1	0
0	0	0	1	1	1	1

(i) Write the parity check matrix.

- (ii) Find four information sets in the above code.
- (iii) Find one set of 4 co-ordinates that do not form an information set.
- (b) (i) Find the dimension and minimum weight of the Reed-Muller code R (2, 4).
 - (ii) Find the generator matrix of the Reed-Muller code R (3, 4).
 - (iii) The parity check matrix of [15, 11]binary Hamming code is given below :

0	0	0	0	1	1	1	1	1	1	1	1	0	0	0
1	1	1	0	0	0	0	1	1	1	1	0	1	0	0
0	1	1	1	0	1	1	0	0	1	1	0	0	1	0
1	0	1	1	1	0	1	0	1	0	1	0	0	0	1_

Assume that the received vector is (0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1). Find the correct decoded message. 6

2. (a) (i) Show that the polynomial $f(x) = x^3 + x + 1$ is irreducible in $\mathbf{F}_2[x]$.

(ii) Let
$$\alpha = x + \langle f(x) \rangle \in \frac{\mathbf{F}_2[x]}{\langle f(x) \rangle}$$
. Write

every element of
$$\frac{\mathbf{F}_2[x]}{\langle f(x) \rangle}$$
 as a power of α .

(iii) Write
$$\alpha^5 + \alpha^4 + \alpha^2 + 1$$
 as a power of α , where α is as in (i). 5

(b) Find all the codewords of the cyclic code with generator matrix :

1	0	1	1	1	0	0
0	1	0	1	1	1	0
0	0	1	0	1	1	1

Find the minimum weight of the code. How errors can the code detect and how many it correct? 5

3. (a) Construct all possible BCH codes over \mathbf{F}_8 of length 8. 6

(b) Let C be any
$$\left[n, \frac{n-1}{2}\right]$$
 cyclic code over

 \mathbf{F}_q . Then show that C is self orthogonal if and only if C is an even like duadic code whose splitting is given by μ_{-1} .

P. T. O.

- 4. (a) Let A_i and A_i^{\perp} be the number of codewords of weight in C and C_1^{\perp} respectively. Let C be a binary code generated by $\begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}$. For $0 \le i \le b$, find A_i and A_i^{\perp} .
 - (b) Show that \mathbf{Z}_4 linear codes with generator matrices :

$$\mathbf{G}_{1} = \begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

and
$$\mathbf{G}_{2} = \begin{bmatrix} 0 & 0 & 1 & 2 \\ 1 & 2 & 0 & 1 \\ 0 & 1 & 0 & 2 \end{bmatrix}$$

are monomially equivalent.

4

5. (a) Find the convolutional code for the message 1101. The convolutional encoder is given below : 4

(b) Let C be the narrow-sense BCH code of designed distance δ = 5, which has a defining set T = {1, 2, 3, 4, 6, 8, 9, 12}. Let α be a primitive 15th root of unity, where α⁴ = 1 + α and the generator polynomial C be g(x) = 1 + x⁴ + x⁶ + x⁷ + x⁸. If y (x) = x + x⁴ + x⁷ + x⁸ + x¹¹ + x¹² + x¹³ is

received. You can use the following table : 6

0000	0	1000	α^3	1011	α^7	1110	α^{11}
0001	1	0011	α^4	0101	α^8	1111	α^{12}
0010	α	0110	α^5	1010	α^9	1101	α^{13}
0100	α^2	1100	α^6	0111	α^{10}	1001	α^{14}

- 6. Which of the following statements are true and which are false ? Justify your answer with a short proof or counter-example : 2×5=10
 - (a) Every binary Hamming code is a cyclic code.

- (b) $R_{q,n} = \mathbf{F}_q[X] / \langle X^n 1 \rangle$ is a field if and only if n = 1.
- (c) The degree of a generator polynomial of a cyclic code is equal to the dimension of the code.
- (d) There is no self-dual code of length 5.
- (e) There is no (5, 3, 4) LDPC code.

MMTE-005