M. Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) [M. Sc. (MACS)]

Term-End Examination
June, 2022

MMTE-004 : COMPUTER GRAPHICS

Time : $1 \frac{1}{2}$ Hours
Maximum Marks : 25
(Weightage: 50\%)
Note: (i) Question No. 1 is compulsory.
(ii) Attempt any three questions out of question no. 2 to 5.
(iii) Use of calculator is not allowed.

1. State whether the following statements are true or false. Justify your answers with a short proof or a counter-example :
(a) Image aspect ratio is same as its resolution.
P. T. O.
(b) Boundary fill algorithm is suitable for regions with boundary having more than one colour.
(c) For a given line segment, the CohenSutherland line clipping algorithm checks first for its trivial rejection, and then tests for its trivial acceptance.
(d) The reflection about the line $y=x$ is attained by reversing x, y coordinates.
(e) The matrix $\left[\begin{array}{lr}\sqrt{\frac{3}{2}} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2}\end{array}\right]$
rotation.
2. (a) Reflect the pyramid A (1, 0, 0), B ($0,1,0$), C $(0,0,1)$ and $\mathrm{D}(0,0,0)$ about XY-plane.
(b) Use the Cohen-Sutherland algorithm to clip the line $\mathrm{P}_{1}(70,20)$ and $\mathrm{P}_{2}(100,10)$ against a rectangular window with lower left corner $(50,10)$ and upper right hand corner (80, 40).
3. (a) Perform a 45° rotation of the triangle $\mathrm{A}(1,0), \mathrm{B}(0,1)$ and $\mathrm{C}(1,1)$.
(b) Let origin be the centre of projection. Find the perspective projection when the plane passes through the point $(2,3,-1)$ and has normal vector ($1,1,1$).
4. (a) Explain the midpoint circle generation algorithm and demonstrate it for a circle of radius $r=8$ with centre at the origin, upto three iterations. 3
(b) Explain Bresenham's line generation algorithm and trace the algorithm for a line segment with vertices $(10,12)$ and $(15,15)$.
5. (a) Let $\mathrm{P}(t)$ be the Bezier cubic curve defined on the interval $[0,1]$ with control points $\mathrm{P}_{0}(0,0), \mathrm{P}_{1}(6,10), \mathrm{P}_{2}(10,10), \mathrm{P}_{3}(20,0)$. Find $\mathrm{P}(t)$.
(b) Write two differences between parallel projection and perspective projection. 2
