M. Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) [M. Sc. (MACS)]
 Term-End Examination
 June, 2022
 MMTE-001 : GRAPH THEORY

Time : 2 Hours
Maximum Marks : 50
Note: Question No. 1 is compulsory. Answer any four questions from Question Nos. 2 to 7. Use of calculators is not allowed.

1. State whether the following statements are true or false. Justify your answers with a short proof or a counter-example :
(i) The complement of a connected graph is connected.
(ii) Every tree has a perfect matching.
(iii) A 2-connected planar graph is Hamiltonian.
(iv) The Peterson graph has a 3 -critical subgraph.
(v) $\quad \alpha\left(\mathrm{S}_{n}\right)=n-1 \quad \forall n \geq 2$
P. T. O.
2. (a) Prove that the number of edges in an n-vertex graph with k components is at $\operatorname{most}\binom{n-k+1}{2}$.
(b) Compute the diameter and radius of the following graph :

(c) There exists a self-complementary graph on 1015 vertices. True or false ? Justify. 2
3. (a) Let G and H be the graphs as shown below :

G

H

Draw GUH. Is GUH Hamiltonian ? Is it Eulerian? Justify your answers. 4
(b) There exists a 3 -edge-colourable graph on 10 vertices and 20 edges. True or false ? Justify.
(c) Define the terms rooted tree, binary tree and k-ary tree.
4. (a) Let G be a graph with the property that between every pair of vertices of G there is exactly one path. Show that G is a tree. 3
(b) Find a minimum-weight spanning tree of the following weighted graph, using Kruskal's algorithm :

(c) Is the complement of a Eulerian graph Eulerian ? Justify your answer.
5. (a) Draw a graph G with connectivity 2, and having two vertices u and v joined by 4 internally disjoint paths.
P. T. O.
(b) Check whether the Grötzsch graph is planar or not.
(c) Find the chromatic number of $\mathrm{K}_{7},{ }_{10}$.
6. (a) Let G be a graph with a matching M. Show that if G has no M -augmenting path, then M is maximum.
(b) Verify the König-Egervāry theorem for the following graph :

7. (a) If G is a 3-regular graph, then show that $K(G)=K^{\prime}(G)$.
(b) Find the maximum possible value of a flow in the following network :

