M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS) Term-End Examination June, 2022

MMT-008 : PROBABILITY AND STATISTICS

Time : 3 hours

Maximum Marks : 100

Note: Question no. 8 is compulsory. Attempt any six questions from questions no. 1 to 7. Use of scientific non-programmable calculator is allowed. Symbols have their usual meanings.

1. (a) Consider the Markov chain having the following transition probability matrix :

		1	2	3	4	5	6
P =	1	$\frac{1}{3}$	$\frac{2}{3}$	0	0	0	0
	2	$\frac{2}{3}$	$\frac{1}{3}$	0	0	0	0
	3	$rac{1}{4}$	0	$\frac{1}{4}$	0	$rac{1}{4}$	$\frac{1}{4}$
	4	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$
	5	0	0	$rac{1}{4}$	$rac{3}{4}$	0	0
	6	0	0	$\frac{1}{5}$	$\frac{4}{5}$	0	0

MMT-008

P.T.O.

- (i) Draw the diagram of a Markov chain.
- (ii) Classify the states of a Markov chain, i.e., persistent, transient, non-null and a periodic state. Also check the irreducibility of Markov chain.
- (iii) Find the closed sets.
- (iv) Find the probability of absorption to the closed classes. Also find the mean time up to absorption from transient state 3 to 4.
- (b) Determine the parameters of the bivariate normal distribution : 7

$$\begin{split} f(x, y) &= \\ K \exp \left[-\frac{8}{27} \left\{ (x-7)^2 - 2(x-7) (y+5) + 4(y+5)^2 \right\} \right] \\ \text{Also find the value of K.} \end{split}$$

2. (a) Suppose that the probability of a dry day (State 0) following a rainy day (State 1) is $\frac{1}{3}$ and the probability of a rainy day following a dry day is $\frac{1}{2}$. Write the transition probability matrix of the above Markov chain.

Given that 1st May is a dry day, then calculate

- (i) the probability that 3rd May is also a dry day.
- (ii) the stationary probabilities.

MMT-008

2

6

(b) Let $X \sim N_4(\mu, \Sigma)$ with

$$\mathfrak{\mu} = \begin{pmatrix} 2 \\ 1 \\ 3 \\ -4 \end{pmatrix} \text{ and } \sum = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & -2 & -1 \\ 1 & -2 & 9 & -1 \\ 1 & -1 & -1 & 16 \end{bmatrix}$$

Support \underline{Y} and \underline{Z} are two partitioned subvectors of \underline{X} such that $\underline{Y}' = (x_1 \ x_3)$ and $\underline{Z}' = (x_2 \ x_4).$

- (i) Obtain the marginal distribution of Y'_{2} .
- (ii) Check the independence of Y' and Z'.
- (iii) Obtain the conditional distribution of $Y'_{i} | Z'_{i};$ where $Y'_{i} = (x_{1} x_{2}),$ $Z'_{i} = (x_{3} x_{4}).$
- (iv) Find E $(\underline{Y}' | \underline{Z}')$]; where \underline{Y}' and \underline{Z}' are same as in (iii).
- **3.** (a) Suppose that customers arrive at a service counter in accordance with a Poisson process with mean rate 2 per minute. Then obtain the probability that the interval between two successive arrivals is
 - (i) more than 1 minute.
 - (ii) 4 minutes or less.
 - (iii) between 1 and 2 minutes.

3

MMT-008

P.T.O.

6

(b) The body dimensions of a certain species have been recorded. The information of body length L and body weight W are given below :

Body length L (in mm)	Body weight W (in mg)
45	2.9
48	$2\cdot 4$
45	2.8
48	2.9
44	$2 \cdot 4$
45	$2\cdot 3$
45	3.1
42	1.7
50	$2\cdot 4$
52	3.7

At 5% level of significance, test the hypothesis that all variances are equal and all covariances are equal in variance-covariance matrix for the given data.

[You may like to use the values,
$$\chi^2_{9,0\cdot05} = 3.84, \ \chi^2_{10,0\cdot05} = 4.10, \ \chi^2_{11,0\cdot05} = 5.09$$
]

9

7

4. (a) Find the differential equation of pure birth process with $\lambda_{\rm K} = {\rm K}\lambda$ and the process start with one individual at time t = 0. Hence, find ${\rm p}_{\rm n}(t) = {\rm P}({\rm N}(t) = {\rm n})$ [N(t) is the number present at time t] with E (N(t)) and Var (N(t)). Also identify the distribution.

MMT-008

(b) Let $\{X_n; n \ge 1\}$ be an i.i.d. sequence of interoccurrence times with common probability mass function given by

$$\begin{split} P\left(X_n=0\right) &= \frac{2}{3}, \ P\left(X_n=1\right) = P\left(X_n=2\right) = \frac{1}{6}.\\ \text{Let } N_t; \ t \geq 0 \ \text{be the corresponding renewal}\\ \text{process. Find the Laplace transform } \tilde{M}_t \ \text{of}\\ \text{the renewal function, } M_t. \end{split}$$

- (c) Write two advantages and two disadvantages of conjoint analysis.
- 5. (a) The Tooth Care Hospital provides free dental service to the patients on every Saturday morning. There are 3 dentists on duty, who are equally qualified and experienced. It takes on an average 20 minutes for a patient to get treatment and the actual time taken is known to vary approximately exponentially around this average. The patients arrive according to the Poisson distribution with an average of 6 per hour. The officer of the hospital wants to investigate the following :
 - (i) The expected number of patients in the queue.
 - (ii) The average time that a patient spends at the clinic.
 - (iii) The average percentage idle time for each of the dentists.

9

4

4

(b) For the two-state Markov chain, whose transition probability matrix is

$$\mathbf{P} = \begin{pmatrix} 1-p & p \\ p & 1-p \end{pmatrix}; \ 0 \le p \le 1.$$

Find all stationary distributions.

6. (a) Let p_K , K = 0, 1, 2 be the probability that an individual generates K offsprings. Then find the p.g.f. of $\{p_K\}$. Also calculate the probability of extinction when

(i)
$$p_0 = \frac{1}{4}$$
, $p_1 = \frac{1}{4}$ and $p_2 = \frac{1}{2}$.

(ii)
$$p_0 = \frac{2}{3}$$
, $p_1 = \frac{1}{6}$ and $p_2 = \frac{1}{6}$. 6

(b) Let p = 3 and m = 1 and suppose the random variables X_1 , X_2 and X_3 have the positive definite covariance matrix :

$$\sum = \begin{bmatrix} 1 & 0.4 & 0.3 \\ 0.4 & 1 & 0.2 \\ 0.3 & 0.2 & 1 \end{bmatrix}$$

Write its factor model.

(c) For X distributed as $N_3(\mu,\ \Sigma),$ find the distribution of

$$\begin{bmatrix} X_1 & -X_2 & X_3 \\ -X_1 & X_2 & X_3 \end{bmatrix}.$$
3

MMT-008

6

7. (a) The joint density function of random variables X, Y and Z is given as

 $f(x, y, z) = K.x.e^{-(y+z)};$

 $0 < x < 2, y \ge 0$ and $z \ge 0$.

Find

- $(i) \quad \ \ the \ constant \ K.$
- (ii) the marginal distributions of X, Y and Z.
- (iii) E(X), E(Y) and E(Z).
- (iv) the conditional expectation of Y given X and Z.
- (v) the correlation coefficient between X and Y.
- (b) For the model M|M|1|N|FIFO, calculate the steady state solution for P_0 .

 $E(n)-Average \ number \ of \ customers \ in \ the \\ system$

E(V) – Average waiting time in the system

9

- 8. State which of the following statements are *true* and which are *false*. Give a short proof or a counter example in support of your answer.
 - (a) For 3 independent events E_1 , E_2 and E_3 $P(E_1 \cup E_2 \cup E_3) + P(\overline{E}_1) P(\overline{E}_2) P(\overline{E}_3) = 0.$

10

- (b) The range of multiple and partial correlation coefficient is (-1, 1).
- (c) If {X(t); $t \ge 0$ } is a Poisson process, then N(t) = [X(t + S₀) - X(t)] where S₀ > 0 is a fixed constant, is also a Poisson process.
- (d) In Hotelling T^2 , the value of S is given by

$$S = \frac{1}{n-1} \sum_{j=1}^{n} (X_{j} - \mu) (X_{j} - \mu)'.$$

(e) Let $X_{p\times 1} \sim N_p(\mu, \Sigma)$ and $X_{p\times n}$ be the state matrix, then parameters involved in the above distribution are p for μ and $\frac{1}{2}p(p + 1)$ for Σ .

MMT-008