M.Sc. (MATHEMATICS WITH APPLICATIONS

IN COMPUTER SCIENCE)
M.Sc. (MACS)

Term-End Examination
June, 2022

MMT-008 : PROBABILITY AND STATISTICS

Time: 3 hours
Maximum Marks : 100
Note: Question no. 8 is compulsory. Attempt any six questions from questions no. 1 to 7. Use of scientific non-programmable calculator is allowed. Symbols have their usual meanings.

1. (a) Consider the Markov chain having the following transition probability matrix :

$P=$| 1 |
| :---: |
| $2\left[\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ \frac{1}{3} & \frac{2}{3} & 0 & 0 & 0 & 0 \\ \frac{2}{3} & \frac{1}{3} & 0 & 0 & 0 & 0 \\ 4 & 6 \\ \frac{1}{4} & 0 & \frac{1}{4} & 0 & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\ 0 & 0 & \frac{1}{4} & \frac{3}{4} & 0 & 0 \\ 0 & 0 & \frac{1}{5} & \frac{4}{5} & 0 & 0\end{array}\right]$ |

(i) Draw the diagram of a Markov chain.
(ii) Classify the states of a Markov chain, i.e., persistent, transient, non-null and a periodic state. Also check the irreducibility of Markov chain.
(iii) Find the closed sets.
(iv) Find the probability of absorption to the closed classes. Also find the mean time up to absorption from transient state 3 to 4 .
(b) Determine the parameters of the bivariate normal distribution :

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x}, \mathrm{y})= \\
& \mathrm{K} \exp \left[-\frac{8}{27}\left\{(\mathrm{x}-7)^{2}-2(\mathrm{x}-7)(\mathrm{y}+5)+4(\mathrm{y}+5)^{2}\right\}\right] \\
& \text { Also find the value of } \mathrm{K} .
\end{aligned}
$$

2. (a) Suppose that the probability of a dry day (State 0) following a rainy day (State 1) is $\frac{1}{3}$ and the probability of a rainy day following a dry day is $\frac{1}{2}$. Write the transition probability matrix of the above Markov chain.

Given that $1^{\text {st }}$ May is a dry day, then calculate
(i) the probability that $3^{\text {rd }}$ May is also a dry day.
(ii) the stationary probabilities.
(b) Let $\underset{\sim}{X} \sim N_{4}(\underset{\sim}{\mu}, \Sigma)$ with
$\underset{\sim}{\mu}=\left(\begin{array}{c}2 \\ 1 \\ 3 \\ -4\end{array}\right)$ and $\sum=\left[\begin{array}{rrrr}1 & 1 & 1 & 1 \\ 1 & 2 & -2 & -1 \\ 1 & -2 & 9 & -1 \\ 1 & -1 & -1 & 16\end{array}\right]$
Support $\underset{\sim}{Y}$ and $\underset{\sim}{Z}$ are two partitioned subvectors of $\underset{\sim}{X}$ such that $\underset{\sim}{\mathrm{Y}^{\prime}}=\left(\mathrm{x}_{1} \mathrm{x}_{3}\right)$ and $\underset{\sim}{Z^{\prime}}=\left(\begin{array}{ll}\mathrm{x}_{2} & \mathrm{x}_{4}\end{array}\right)$.
(i) Obtain the marginal distribution of $\underset{\sim}{\mathrm{Y}}$.
(ii) Check the independence of $\underset{\sim}{\mathrm{Y}}{ }^{\prime}$ and $\underset{\sim}{\mathrm{Z}}$.
(iii) Obtain the conditional distribution of $\underset{\sim}{\mathrm{Y}}{ }^{\prime} \mid \underset{\sim}{Z} \mathrm{Z}^{\prime} ; \quad$ where $\quad \underset{\sim}{\mathrm{Y}}{ }^{\prime}=\left(\mathrm{x}_{1} \mathrm{x}_{2}\right)$, $\underset{\sim}{Z}{ }^{\prime}=\left(x_{3} x_{4}\right)$.
(iv) Find $\mathrm{E}\left(\underset{\sim}{\mathrm{Y}}{ }^{\prime} \mid \underset{\sim}{\mathrm{Z}}\right)$]; where $\underset{\sim}{\mathrm{Y}}{ }^{\prime}$ and $\underset{\sim}{\mathrm{Z}}{ }^{\prime}$ are same as in (iii).
3. (a) Suppose that customers arrive at a service counter in accordance with a Poisson process with mean rate 2 per minute. Then obtain the probability that the interval between two successive arrivals is
(i) more than 1 minute.
(ii) 4 minutes or less.
(iii) between 1 and 2 minutes.
(b) The body dimensions of a certain species have been recorded. The information of body length L and body weight W are given below :

Body length L (in mm)	Body weight W (in mg)
45	$2 \cdot 9$
48	$2 \cdot 4$
45	$2 \cdot 8$
48	$2 \cdot 9$
44	$2 \cdot 4$
45	$2 \cdot 3$
45	$3 \cdot 1$
42	$1 \cdot 7$
50	$2 \cdot 4$
52	$3 \cdot 7$

At 5\% level of significance, test the hypothesis that all variances are equal and all covariances are equal in variance-covariance matrix for the given data.
[You may like to use the values, $\left.\chi_{9,0 \cdot 05}^{2}=3 \cdot 84, \quad \chi_{10,0 \cdot 05}^{2}=4 \cdot 10, \chi_{11,0 \cdot 05}^{2}=5 \cdot 09\right]$
4. (a) Find the differential equation of pure birth process with $\lambda_{\mathrm{K}}=\mathrm{K} \lambda$ and the process start with one individual at time $\mathrm{t}=0$. Hence, find $p_{n}(t)=P(N(t)=n)[N(t)$ is the number present at time t] with $\mathrm{E}(\mathrm{N}(\mathrm{t}))$ and $\operatorname{Var}(\mathrm{N}(\mathrm{t}))$. Also identify the distribution.
(b) Let $\left\{\mathrm{X}_{\mathrm{n}} ; \mathrm{n} \geq 1\right\}$ be an i.i.d. sequence of interoccurrence times with common probability mass function given by

$$
\mathrm{P}\left(\mathrm{X}_{\mathrm{n}}=0\right)=\frac{2}{3}, \mathrm{P}\left(\mathrm{X}_{\mathrm{n}}=1\right)=\mathrm{P}\left(\mathrm{X}_{\mathrm{n}}=2\right)=\frac{1}{6} .
$$

Let $\mathrm{N}_{\mathrm{t}} ; \mathrm{t} \geq 0$ be the corresponding renewal process. Find the Laplace transform $\tilde{\mathrm{M}}_{\mathrm{t}}$ of the renewal function, M_{t}.
(c) Write two advantages and two disadvantages of conjoint analysis.
5. (a) The Tooth Care Hospital provides free dental service to the patients on every Saturday morning. There are 3 dentists on duty, who are equally qualified and experienced. It takes on an average 20 minutes for a patient to get treatment and the actual time taken is known to vary approximately exponentially around this average. The patients arrive according to the Poisson distribution with an average of 6 per hour. The officer of the hospital wants to investigate the following :
(i) The expected number of patients in the queue.
(ii) The average time that a patient spends at the clinic.
(iii) The average percentage idle time for each of the dentists.
(b) For the two-state Markov chain, whose transition probability matrix is

$$
\mathrm{P}=\left(\begin{array}{cc}
1-\mathrm{p} & \mathrm{p} \\
\mathrm{p} & 1-\mathrm{p}
\end{array}\right) ; 0 \leq \mathrm{p} \leq 1 .
$$

Find all stationary distributions.
6. (a) Let $p_{\mathrm{K}}, \mathrm{K}=0,1,2$ be the probability that an individual generates K offsprings. Then find the p.g.f. of $\left\{p_{\mathrm{K}}\right\}$. Also calculate the probability of extinction when
(i) $\mathrm{p}_{0}=\frac{1}{4}, \mathrm{p}_{1}=\frac{1}{4}$ and $\mathrm{p}_{2}=\frac{1}{2}$.
(ii) $\mathrm{p}_{0}=\frac{2}{3}, \mathrm{p}_{1}=\frac{1}{6}$ and $\mathrm{p}_{2}=\frac{1}{6}$.
(b) Let $\mathrm{p}=3$ and $\mathrm{m}=1$ and suppose the random variables $\mathrm{X}_{1}, \mathrm{X}_{2}$ and X_{3} have the positive definite covariance matrix :

$$
\sum=\left[\begin{array}{ccc}
1 & 0 \cdot 4 & 0 \cdot 3 \\
0 \cdot 4 & 1 & 0 \cdot 2 \\
0 \cdot 3 & 0 \cdot 2 & 1
\end{array}\right]
$$

Write its factor model.
(c) For X distributed as $\mathrm{N}_{3}(\mu, \Sigma)$, find the distribution of

$$
\left[\begin{array}{rrr}
\mathrm{X}_{1} & -\mathrm{X}_{2} & \mathrm{X}_{3} \\
-\mathrm{X}_{1} & \mathrm{X}_{2} & \mathrm{X}_{3}
\end{array}\right]
$$

7. (a) The joint density function of random variables X, Y and Z is given as

$$
\begin{aligned}
& f(x, y, z)=K \cdot x \cdot e^{-(y+z)} ; \\
& 0<x<2, y \geq 0 \text { and } z \geq 0 .
\end{aligned}
$$

Find
(i) the constant K.
(ii) the marginal distributions of X, Y and Z.
(iii) $\mathrm{E}(\mathrm{X}), \mathrm{E}(\mathrm{Y})$ and $\mathrm{E}(\mathrm{Z})$.
(iv) the conditional expectation of Y given X and Z .
(v) the correlation coefficient between X and Y .
(b) For the model $\mathrm{M}|\mathrm{M}| 1|\mathrm{~N}|$ FIFO, calculate the steady state solution for P_{0}.

E(n) - Average number of customers in the system
$\mathrm{E}(\mathrm{V})$ - Average waiting time in the system
8. State which of the following statements are true and which are false. Give a short proof or a counter example in support of your answer.
(a) For 3 independent events $\mathrm{E}_{1}, \mathrm{E}_{2}$ and E_{3} $\mathrm{P}\left(\mathrm{E}_{1} \cup \mathrm{E}_{2} \cup \mathrm{E}_{3}\right)+\mathrm{P}\left(\overline{\mathrm{E}}_{1}\right) \mathrm{P}\left(\overline{\mathrm{E}}_{2}\right) \mathrm{P}\left(\overline{\mathrm{E}}_{3}\right)=0$.
(b) The range of multiple and partial correlation coefficient is $(-1,1)$.
(c) If $\{\mathrm{X}(\mathrm{t}) ; \mathrm{t} \geq 0\}$ is a Poisson process, then $\mathrm{N}(\mathrm{t})=\left[\mathrm{X}\left(\mathrm{t}+\mathrm{S}_{0}\right)-\mathrm{X}(\mathrm{t})\right]$ where $\mathrm{S}_{0}>0$ is a fixed constant, is also a Poisson process.
(d) In Hotelling T^{2}, the value of S is given by

$$
S=\frac{1}{n-1} \sum_{j=1}^{n}\left(X_{j}-\mu\right)\left(X_{j}-\mu\right)^{\prime}
$$

(e) Let $\underset{\sim}{X} \mathrm{X}_{\mathrm{p} \times 1} \sim \mathrm{~N}_{\mathrm{p}}(\mu, \Sigma)$ and $\mathrm{X}_{\mathrm{p} \times \mathrm{n}}$ be the state matrix, then parameters involved in the above distribution are p for μ and $\frac{1}{2} p(p+1)$ for Σ.

