M.Sc. (MATHEMATICS WITH APPLICATIONS

 IN COMPUTER SCIENCE)M.Sc. (MACS)

Term-End Examination
June, 2022

MMT-007 : DIFFERENTIAL EQUATIONS AND NUMERICAL SOLUTIONS

Time : 2 hours Maximum Marks : 50
(Weightage : 50\%)
Note: Question no. 1 is compulsory. Attempt any four questions out of the remaining questions no. 2 to 7. Use of non-programmable scientific calculator is allowed.

1. State whether the following statements are True or False. Justify your answer with the help of a short proof or a counter example.
$5 \times 2=10$
(a) The solution of IVP

$$
\mathrm{y}^{\prime}=-|\mathrm{y}|, \mathrm{y}(0)=1
$$

does not exist at any point in the neighbourhood of the origin.
(b) When the heat conduction equation $u_{t}=u_{x x}$ is approximated by
$\frac{1}{2 \mathrm{k}}\left(\mathrm{u}_{\mathrm{m}}^{\mathrm{n}+1}-\mathrm{u}_{\mathrm{m}}^{\mathrm{n}-1}\right)=\frac{1}{\mathrm{~h}^{2}}\left(\mathrm{u}_{\mathrm{m}-1}^{\mathrm{n}}-2 \mathrm{u}_{\mathrm{m}}^{\mathrm{n}}+\mathrm{u}_{\mathrm{m}-1}^{\mathrm{n}}\right)$,
the transaction error of the method is of order $\left(k^{2}+k h^{2}\right)$.
(c) For the differential equation $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+p(p+1) y=0, x=1$ is a regular singular point.
(d) $\mathcal{Z}\left[\frac{\sinh 2 \mathrm{t}}{\mathrm{t}}\right]=\frac{1}{2} \ln \left(\frac{\mathrm{~s}+2}{\mathrm{~s}-2}\right)$.
(e) For solving the IVP

$$
\mathrm{y}^{\prime}=\mathrm{f}(\mathrm{x}, \mathrm{y}), \mathrm{y}\left(\mathrm{x}_{0}\right)=\mathrm{y}_{0}
$$

a general multi-step method can be written in the form

$$
\begin{array}{r}
y_{i+1}=a_{1} y_{i}+a_{2} y_{i-1}+\ldots+a_{k} y_{i-k+1}+ \\
h\left(b_{0} y_{i+1}^{\prime}+b_{1} y_{i}^{\prime}+\ldots+b_{k} y_{i-k+1}^{\prime}\right) .
\end{array}
$$

The method is explicit if $b_{0} \neq 0$ and implicit if $\mathrm{b}_{0}=0$.
2. (a) Construct Green's function for the boundary value problem

$$
\begin{aligned}
& \frac{\partial^{2} y}{\partial x^{2}}+2 \frac{\partial \mathrm{y}}{\partial \mathrm{x}}+10 \mathrm{y}=0,0<\mathrm{x}<\frac{\pi}{2} \\
& \mathrm{y}(0)=0, \mathrm{y}\left(\frac{\pi}{2}\right)=0
\end{aligned}
$$

(b) Find the solution of the heat equation

$$
\frac{\partial \mathrm{u}}{\partial \mathrm{t}}=\frac{\partial^{2} \mathrm{u}}{\partial \mathrm{x}^{2}}
$$

subject to the conditions

$$
\mathrm{u}(\mathrm{x}, 0)=0, \mathrm{u}(0, \mathrm{t})=0 \text { and } \mathrm{u}(1, \mathrm{t})=\mathrm{t} \text {, }
$$

using implicit Crank-Nicolson method with $\mathrm{h}=\frac{1}{2}$ and $\mathrm{k}=\frac{1}{8}$. Integrate for two time levels.
3. (a) Find the power series solution, near $x=0$ of the differential equation

$$
9 x(1-x) y^{\prime \prime}-12 y^{\prime}+4 y=0 .
$$

(b) Expand $f(x)=x^{3}-3 x^{2}+2 x$ in a series of the form $\sum_{n=0}^{\infty} a_{n} H_{n}(x)$, where $H_{n}(x)$ is the Hermite polynomial of degree n in x .
4. (a) The five-point formula for Poisson equation

$$
\begin{aligned}
& \qquad \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=G(x, y) \text { is } \\
& u_{i+1, j}+u_{i-1, j}+u_{i, j+1}+u_{i, j-1}-4 u_{i, j}=h^{2} G\left(x_{i}, y_{j}\right) \\
& \text { Using Taylor Series expansions, find the } \\
& \text { order of this five-point formula. }
\end{aligned}
$$

(b) Solve the initial value problem $\mathrm{y}^{\prime}=-2 \mathrm{xy}^{2}$, $\mathrm{y}(0)=1$ with $\mathrm{h}=0 \cdot 2$ on the interval $[0,0 \cdot 4]$, using the Predictor-Corrector method.

$$
\begin{aligned}
& \mathrm{P}: \mathrm{y}_{\mathrm{k}+1}=\mathrm{y}_{\mathrm{k}}+\frac{\mathrm{h}}{2}\left(3 \mathrm{y}_{\mathrm{k}}^{\prime}-\mathrm{y}_{\mathrm{k}-1}^{\prime}\right) \\
& \mathrm{C}: \mathrm{y}_{\mathrm{k}+1}=\mathrm{y}_{\mathrm{k}}+\frac{\mathrm{h}}{2}\left(\mathrm{y}_{\mathrm{k}-1}^{\prime}+\mathrm{y}_{\mathrm{k}}^{\prime}\right)
\end{aligned}
$$

Perform two corrector iterations per step. Use the exact solution $\mathrm{y}=\frac{1}{1+\mathrm{x}^{2}}$ to obtain the starting value.
5. (a) Using Laplace Transform, solve

$$
\begin{aligned}
& \frac{\partial^{2} \mathrm{u}}{\partial \mathrm{t}^{2}}=9 \frac{\partial^{2} \mathrm{u}}{\partial \mathrm{x}^{2}} \text { with } \mathrm{u}(0, \mathrm{t})=\mathrm{u}(2, \mathrm{t})=0 \\
& \mathrm{u}_{\mathrm{t}}(\mathrm{x}, 0)=0 \text { and } \mathrm{u}(\mathrm{x}, 0)=10 \sin 2 \pi \mathrm{x}
\end{aligned}
$$

(b) Find the solution to the initial boundary value problem, subject to given initial and boundary conditions

$$
\begin{aligned}
& \frac{\partial \mathrm{u}}{\partial \mathrm{t}}=\frac{\partial^{2} \mathrm{u}}{\partial \mathrm{x}^{2}} \\
& \mathrm{u}(\mathrm{x}, 0)=\left[\begin{array}{ccccc}
2 \mathrm{x} & \text { for } & \mathrm{x} & \in & {\left[0, \frac{1}{2}\right]} \\
-2 \mathrm{x} & \text { for } & \mathrm{x} & \in & {\left[\frac{1}{2}, 1\right]}
\end{array}\right. \\
& \mathrm{u}(0, \mathrm{t})=0=\mathrm{u}(1, \mathrm{t}),
\end{aligned}
$$

using Schmidt method with $\lambda=\frac{1}{6}$ and $h=0 \cdot 2$.
6. (a) Find the solution of the boundary value problem

$$
\begin{aligned}
& \mathrm{u}_{\mathrm{xx}}+\mathrm{u}_{\mathrm{yy}}=\mathrm{x}^{2}+\mathrm{y}^{2} \\
& \mathrm{u}(\mathrm{x}, \mathrm{y})=\mathrm{x}^{2}-\mathrm{y}^{2} \text { on the boundary } \\
& 0 \leq \mathrm{x} \leq 4,0 \leq \mathrm{y} \leq 4,0 \leq \mathrm{x}+\mathrm{y} \leq 4
\end{aligned}
$$

$$
\text { using the five-point formula. Assume } \mathrm{h}=1 .
$$

(b) If $f(x)=\left\{\begin{array}{lr}0, & -1<x<0 \\ x, & 0<x<1,\end{array}\right.$
show that

$$
\begin{array}{r}
\mathrm{f}(\mathrm{x})=\frac{1}{4} \mathrm{P}_{0}(\mathrm{x})+\frac{1}{2} \mathrm{P}_{1}(\mathrm{x})+\frac{5}{16} \mathrm{P}_{2}(\mathrm{x})- \\
\frac{3}{32} \mathrm{P}_{\mathrm{n}}(\mathrm{x})+\ldots
\end{array}
$$

where $P_{n}(x)$ is a Legendre polynomial of degree n .
7. (a) Using Runge-Kutta method of $4^{\text {th }}$ order, find $y(0 \cdot 8)$, take $\mathrm{h}=0 \cdot 1$, correct to three decimal places, if

$$
\frac{d y}{d x}=y-x^{2}, y(0 \cdot 6)=1 \cdot 738
$$

(b) Find the Fourier cosine transform of

$$
\mathrm{f}(\mathrm{x})=\left\{\begin{array}{cl}
\mathrm{x} & 0<\mathrm{x}<\frac{1}{2} \\
1-\mathrm{x} & \frac{1}{2}<\mathrm{x}<1 \\
0 & \mathrm{x}>1
\end{array}\right.
$$

