M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

Term-End Examination

June, 2022

MMT-005 : COMPLEX ANALYSIS

Time : $1\frac{1}{2}$ *hours*

Maximum Marks: 25

- Note: Question no. 1 is compulsory. Attempt any three questions from questions no. 2 to 5. Use of calculators is **not** allowed.
- 1. State, giving reasons, whether the following statements are *True* or *False* : $5 \times 2=10$
 - (a) f(z) = |z| is a nowhere differentiable function.
 - (b) If f is analytic on a domain D such that real part of f is constant in D, then the derivative of f is zero in D.

(c) If
$$f(z) = \frac{2z-1}{2-z}$$
, then $f(z)$ maps unit circle

onto unit circle.

MMT-005

(d)
$$f(z) = \frac{\sin z}{\cos z}$$
 is not analytic in the domain $\{z : \frac{3\pi}{2} < \operatorname{Re} z < \frac{5\pi}{2}\}.$

- (e) z = 0 is a pole of order 2 for the function $f(z) = (1 + z + z^2) e^{-1/z}$.
- 2. (a) Let f(z) be an entire function such that there exist M > 0, R > 0 satisfying $|f(z)| \le M |z|$ for |z| > R. Then show that f is a polynomial of degree one.
 - (b) Determine analytic function whose real part is cos x cosh y.

3. (a) Let
$$I(r) = \int_{\gamma} \frac{e^{iz}}{z} dz$$
, where $\gamma : [0, \pi] \to \mathbb{C}$ is

defined by $\chi(t) = re^{it}$, then $\lim_{r \to \infty} I(r) = 0$. 3

3

2

(b) Let C be a closed contour on a domainD and a ∉ D. Show that

$$\int_{C} \frac{1}{(z-a)^n} dz = 0 \text{ for } n \ge 2.$$

MMT-005

2

- 4. (a) Evaluate the integral $\int_{C} \frac{e^{z} e^{-z}}{z^{n}} dz$, when n is a positive integer and $C(t) = e^{it}, 0 \le t \le 2\pi$.
 - (b) Find the bilinear transformation which takes the points 1, 0, ∞ to - 1, i, - i. Also find the fixed points of the transformation, if any.

2

3

5. Evaluate
$$\int_{0}^{2\pi} \frac{\mathrm{d}\theta}{2-\sin\theta}$$
. 5