M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)
 Term-End Examination

June, 2022

MMT-005 : COMPLEX ANALYSIS

Time: $1 \frac{1}{2}$ hours
Maximum Marks : 25

Note: Question no. 1 is compulsory. Attempt any three questions from questions no. 2 to 5. Use of calculators is not allowed.

1. State, giving reasons, whether the following statements are True or False :
(a) $f(z)=|z|$ is a nowhere differentiable function.
(b) If f is analytic on a domain D such that real part of f is constant in D, then the derivative of f is zero in D.
(c) If $f(z)=\frac{2 z-1}{2-z}$, then $f(z)$ maps unit circle onto unit circle.
(d) $f(z)=\frac{\sin z}{\cos z}$ is not analytic in the domain $\left\{\mathrm{z}: \frac{3 \pi}{2}<\operatorname{Re} \mathrm{z}<\frac{5 \pi}{2}\right\}$.
(e) $\mathrm{z}=0$ is a pole of order 2 for the function $f(z)=\left(1+z+z^{2}\right) e^{-1 / z}$.
2. (a) Let $f(z)$ be an entire function such that there exist $\mathrm{M}>0, \mathrm{R}>0$ satisfying $|f(z)| \leq M|z|$ for $|z|>R$. Then show that f is a polynomial of degree one.
(b) Determine analytic function whose real part is $\cos \mathrm{x} \cosh \mathrm{y}$.
3. (a) Let $\mathrm{I}(\mathrm{r})=\int_{\mathcal{Y}} \frac{\mathrm{e}^{\mathrm{iz}}}{\mathrm{z}} \mathrm{dz}$, where $\mathcal{Y}:[0, \pi] \rightarrow \mathbb{C}$ is defined by $\mathcal{Y}(\mathrm{t})=\mathrm{re}$, then $\lim _{\mathrm{r} \rightarrow \infty} \mathrm{I}(\mathrm{r})=0$.
(b) Let C be a closed contour on a domain D and $\mathrm{a} \notin \mathrm{D}$. Show that

$$
\int_{\mathrm{C}} \frac{1}{(\mathrm{z}-\mathrm{a})^{\mathrm{n}}} \mathrm{dz}=0 \text { for } \mathrm{n} \geq 2
$$

4. (a) Evaluate the integral $\int_{C} \frac{e^{z}-e^{-z}}{z^{n}} d z$,
when n is a positive integer and $\mathrm{C}(\mathrm{t})=\mathrm{e}^{\mathrm{it}}, 0 \leq \mathrm{t} \leq 2 \pi$.
(b) Find the bilinear transformation which takes the points $1,0, \infty$ to $-1, \mathrm{i},-\mathrm{i}$. Also find the fixed points of the transformation, if any.
5. Evaluate $\int_{0}^{2 \pi} \frac{\mathrm{~d} \theta}{2-\sin \theta}$.
