M.Sc. (MATHEMATICS WITH APPLICATIONS
 IN COMPUTER SCIENCE)

M.Sc. (MACS)
Term-End Examination
June, 2022

MMT-004 : REAL ANALYSIS

Time : 2 hours
Maximum Marks : 50
(Weightage : 70\%)
Note: Question no. 1 is compulsory. Attempt any four questions out of questions no. 2 to 6. Use of calculator is not allowed.

1. State whether the following statements are True or False. Give reasons for your answers. $5 \times 2=10$
(a) The function $\varphi(\mathrm{x})=\frac{1}{\mathrm{x}}, 3 \leq \mathrm{x} \leq 4$ is not uniformly continuous.
(b) A complete metric space is a countable collection of nowhere dense sets.
(c) The function $\mathrm{f}: \mathbf{R} \rightarrow \mathbf{R}^{2}$ given by $f(x, y)=(x, x|x|)$ is differentiable at 0 .
(d) Any Lebesgue integrable function is always Riemann integrable.
(e) The image of any connected set in \mathbf{R}^{2} under the function $\mathrm{f}: \mathbf{R}^{2} \rightarrow \mathbf{R}$ given by $\mathrm{f}(\mathrm{x}, \mathrm{y})=\mathrm{x}^{2}+\mathrm{y}^{2}$ is connected.
2. (a) Let A and B be non-empty disjoint closed subsets of a metric space (X, d). Show that there exist open sets $\mathrm{U} \supset \mathrm{A}$ and $\mathrm{V} \supset \mathrm{B}$ such that $\mathrm{U} \cap \mathrm{V}=\phi$.
(b) Define saddle points. Compute the saddle points of the function $\mathrm{f}: \mathbf{R}^{2} \rightarrow \mathbf{R}$ given by $f(x, y)=\left(y-x^{2}\right)\left(y-2 x^{2}\right)$.
(c) State the Lebesgue dominated convergence theorem. Find $\operatorname{Lim}_{\mathrm{n} \rightarrow \infty} \int_{0}^{\infty} \frac{\sin \mathrm{x}}{1+\mathrm{nx}^{2}} \mathrm{dx}$.
3. (a) Define components in a metric space. What are all the components of the set of all non-zero real numbers under the
(i) usual metric on \mathbf{R}, and
(ii) the discrete metric on \mathbf{R} ?
(b) Find the directional derivation of the function $\mathrm{f}: \mathbf{R}^{4} \rightarrow \mathbf{R}^{4}$ defined by

$$
f(x, y, z, w)=\left(x^{2} y, x y z, x^{2}+y^{2}, z w\right)
$$

at $(1,2,-1,-2)$ in the direction $\sim=(1,0,-2,2)$.
(c) Define measurable sets in R. Prove that intervals are measurable.
4. (a) If $f: X \rightarrow Y$ is a continuous map between metric spaces X and Y and K is a compact subset of X, then show that $f(K)$ is compact.
(b) Find the Taylor series expansion of the function f given by

$$
f(x, y)=x+2 y+x y-x^{2}-y^{2}
$$

about the point $(1,1)$.
(c) Let $\mathrm{f}, \mathrm{g} \in \mathrm{L}^{\prime}(\mathbf{R})$, define convolution $\mathrm{f} * \mathrm{~g}$ of f and g. Show that if either f or g is bounded, then the convolution $\mathrm{f} * \mathrm{~g}$ exists for all x in \mathbf{R} and is bounded in \mathbf{R}.
5. (a) Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be Cauchy sequences in a metric space (X, d). Show that the sequence $\left\{d\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right)\right\}$ converges in \mathbf{R}.
(b) State the second-derivative test for finding the extremum values of a function f using Hessian Hf.
Find the critical points of
$\mathrm{f}: \mathbf{R}^{3} \rightarrow \mathbf{R}$ given by

$$
f(x, y, z)=x^{2} y^{2}+z^{2}+2 x-4 y+z
$$

and check whether they are extreme points.
(c) Find the Fourier cosine series expansion of the function

$$
\mathrm{f}(\mathrm{t})=\left\{\begin{array}{ll}
1, & 0<\mathrm{t} \leq \frac{1}{2} \tag{3}\\
0, & \frac{1}{2}<\mathrm{t}<1
\end{array} .\right.
$$

6. (a) Show that every path connected metric space is connected.
(b) Consider the function $\mathrm{f}: \mathbf{R}^{3} \rightarrow \mathbf{R}$ given by

$$
f(x, y, z)=x^{2}+y^{3}-x y \sin z
$$

Prove that the equation $\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})=0$ defines a unique continuously differentiable function of near $(1,-1)$ such that $\mathrm{g}(1,-1)=0$.
(c) Define and give an example for each of the following concepts in the context of signals and systems :
(i) A stable system
(ii) A time-varying system

