M.Sc. (MATHEMATICS WITH APPLICATIONS
 IN COMPUTER SCIENCE)
 M.Sc. (MACS)

Term-End Examination
June, 2022

MMT-002 : LINEAR ALGEBRA

Time : $1 \frac{1}{2}$ hours
Maximum Marks : 25
(Weightage : 70\%)
Note: Question no. 5 is compulsory. Attempt any three questions from questions no. 1 to 4. Use of calculators is not allowed.

1. (a) Let $T\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}x_{1}-x_{2} \\ x_{2}-x_{3} \\ x_{1}-x_{3}\end{array}\right]$ be a linear operator
on \mathbf{R}^{3}. Find the matrix of T with respect to the ordered basis $\left\{\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right\}$.
Check whether or not T is an onto linear operator.
(b) Check whether or not the matrix
$\left[\begin{array}{rrr}1 & 2 & 1 \\ 2 & 0 & 4 \\ 1 & 4 & -2\end{array}\right]$ is positive definite.
2. (a) Check whether or not the matrix $A=\left[\begin{array}{lll}3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3\end{array}\right]$ is diagonalisable over \mathbf{R}. If it is, find a unitary matrix P so that $\mathrm{P}^{-1} \mathrm{AP}$ is a diagonal matrix. If A is not diagonalisable, obtain its Jordan form.
(b) Find the Jordan form of the matrix $\left[\begin{array}{lll}1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1\end{array}\right]$.
3. (a) Find the trace of the matrix e^{A}, where $\mathrm{A}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$.
(b) Find all the least square solutions to $\mathrm{x}-\mathrm{y}=1, \mathrm{x}-\mathrm{y}=2$.
4. Find the SVD of $\mathrm{A}=\left[\begin{array}{rr}-1 & 1 \\ 1 & 1 \\ 1 & 2\end{array}\right]$.
5. Which of the following statements are True and which are False ? Give reasons for your answers. $5 \times 2=10$
(a) If an $\mathrm{n} \times \mathrm{n}$ matrix is singular, then it has 0 as an eigenvalue.
(b) If all the eigenvalues of a unitary matrix are 1 , then it is the identity matrix.
(c) If N is nilpotent, then e^{N} is also nilpotent.
(d) Every Hermitian matrix is normal.
(e) $\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]+\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$ is the spectral
decomposition of $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.
