M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)
 M.Sc. (MACS)
 Term-End Examination
 June, 2022

MMT-001 : PROGRAMMING AND DATA STRUCTURES

Time : $1 \frac{1}{2}$ hours
Maximum Marks : 25
(Weightage : 20\%)
Note: Question no. 1 is compulsory. Answer any three questions from questions no. 2 to 5. All programs should be written in ' C ' language only. Use of calculator is not permitted.

1. Write the output of the following segments of code. Justify your answer with short explanations. $5 \times 2=10$
(a) main()

$$
\begin{aligned}
& \{\text { int } a[5] ; \\
& \quad \mathrm{a}[3]=10 ; \\
& \operatorname{printf("\% d",~*(a+3));} \\
& \}
\end{aligned}
$$

(b) \# define min(a, b) (a < b ? a : b)
main()
\{ int x;

$$
\mathrm{x}=\min (1+3,2+1) ;
$$

printf("\%d", x);
\}
(c) main()
\{ struct \{ int i;
\} *xyz;
(* \& xyz) $\rightarrow \mathrm{i}=10$;
printf("\%d", xyz \rightarrow i);
\}
(d) main()
$\{$ int i $=5$; printf("\%d", i = i == 6);
\}
(e) $\operatorname{main}()$
\{ int i = 7, $\mathrm{j}=8$; printf("\%d", i++ - ++j); return 0;
\}
2. (a) Write Preorder and Inorder traversal of the binary tree given below :

(b) Convert the following nested do-while loop into a nested for loop :
$\mathrm{i}=0$;
do
\{ $\mathrm{i}=\mathrm{i}+1$;
$\mathrm{j}=\mathrm{i}$;
do
\{

$$
\text { if }((\mathrm{i}+\mathrm{j}) \% 2==0)
$$ \{ printf("\%d", i); printf("\%d", j); \}

$$
\mathrm{j}=\mathrm{j}+1 ;
$$

$$
\text { \} while(j < = 5); }
$$

\} while(i <=5);
3. (a) Write the definition of the following function in C:

$$
f(x)=\left\{\begin{array}{cl}
x+1 & \text { if } x<5 \\
x+2 & \text { if } 5 \leq x \leq 10 \\
0, & \text { otherwise }
\end{array}\right.
$$

(b) Explain the use of enum data type, with the help of an example.
4. (a) Assuming that the stack is empty initially, what is the status of the stack after each of the following operations?
push(A);
push(B);
pop();
push(B);
push(C);
pop();
push(C);
(b) Declare a structure called "complex" that stores a complex number. Declare a variable of type "complex", also write a function that takes a complex variable as a parameter and returns its modulus.
5. (a) Write a recursive function in ' C ' to compute the factorial of an integer.
(b) Write a ' C ' program that reads an array of integers from keyboard and prints the number of integers divisible by 2 or 3 .

