No. of Printed Pages : 10

PHE-14

BACHELOR OF SCIENCE (B. SC.)

Term-End Examination

June, 2022
PHE-14 : MATHEMATICAL METHODS IN PHYSICS—III

Time : 2 Hours
Maximum Marks : 50
Note: (i) Attempt all questions.
(ii) The marks for each question are indicated against it.
(iii) Symbols have their usual meanings.

1. Attempt any five parts :
$5 \times 2=10$
(a) State the rank of the following tensor and identify the free and dummy indices :

$$
\mathrm{A}^{\prime i j}=\sum_{k l} \frac{\partial x_{i}^{\prime}}{\partial x_{k}} \frac{\partial x_{j}^{\prime}}{\partial x_{l}} \mathrm{~A}^{k l}
$$

(b) Show that the set of all non-singular square matrices of order n forms a group under matrix multiplication.
(c) Verify that the matrix:

$$
\mathrm{A}=\left(\begin{array}{rr}
\frac{1}{2} & \frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right)
$$

is orthogonal.
(d) Show that the function $f(z)=|z|^{2}$ is nonanalytic except at the origin.
(e) Locate and name the singularity of the function $f(z)=\frac{\sin z}{z}$ at $z=0$.
(f) Determine the Laplace transform of $f(t)=t$.
(g) Use Rodrigue's formula of Hermite polynomials :

$$
\mathrm{H}_{n}(x)=(-1)^{n} e^{x^{2}} \frac{d^{n}}{d x^{n}}\left(e^{-x^{2}}\right)
$$

to evaluate $\mathrm{H}_{3}(x)$.
(h) Plot the Laguerre polynomials $\mathrm{L}_{0}(x)$ and
$\mathrm{L}_{1}(x)$ versus x.
2. Attempt any two parts :

$$
2 \times 5=10
$$

(a) Show that the eigenvalues of a Hermitian matrix are real.
(b) Find eigenvalues and eigenvectors of the matrix :

$$
\mathrm{P}=\left(\begin{array}{rr}
3 & 4 \\
4 & -3
\end{array}\right)
$$

(c) Show that $\left\{1, \omega, \omega^{2}\right\}$ is a cyclic group of order 3 with respect to multiplication, where ω is the imaginary cube root of unity.
3. Attempt any two parts :
$2 \times 5=10$
(a) State Cauchy's integral theorem. Evaluate the integral $\oint_{\mathrm{C}} \frac{d z}{1+z^{2}}$, where C is a circle $|z|=3$.
(b) Obtain the Taylor series representation of $\log (1+z)$ about $z=0$.
(c) Using the method of residues, show that:

$$
\int_{0}^{\infty} \frac{d \theta}{1+\sin ^{2} \theta}=\frac{\pi}{\sqrt{2}}
$$

4. Attempt any two parts :
(a) Obtain the Laplace transform of $\cos p t$.
(b) Calculate the inverse Laplace transform of :

$$
\mathrm{F}(s)=\frac{s+1}{s^{3}+s^{2}-6 s}
$$

(c) Obtain the Fourier cosine transform of the function :

$$
f(x)= \begin{cases}\cos x, & -\frac{\pi}{2}<x<\frac{\pi}{2} \\ 0, & |x|>\frac{\pi}{2}\end{cases}
$$

5. Attempt any one part :
(a) Using the generating function for the Legendre polynomials :

$$
g(x, t)=\frac{1}{\sqrt{1-2 t x+t^{2}}}=\sum_{n=0}^{\infty} \mathrm{P}_{n}(x) t^{n}
$$

show that:

$$
\begin{aligned}
n \mathrm{P}_{n-1}(x)+(n+1) & \mathrm{P}_{n+1}(x) \\
& =(2 n+1) x \mathrm{P}_{n}(x)
\end{aligned}
$$

Hence, obtain the value of of $\mathrm{P}_{2}(x)$. $8+2$
(b) The expression for Bessel function of the first kind and of order m is given by :

$$
\mathrm{J}_{m}(x)=\sum_{k=0}^{\infty}(-1)^{k} \frac{1}{k!\lceil(m+k+1)}\left(\frac{x}{2}\right)^{2 k+m}
$$

Using this expression, show that:

$$
\begin{aligned}
\mathrm{J}_{1 / 2}(x) & =\sqrt{\frac{2}{\pi}} x^{\frac{-1}{2}} \sin x \\
\text { and } \mathrm{J}_{-1 / 2}(x) & =\sqrt{\frac{2}{\pi}} x^{-1 / 2} \cos x . \quad 5+5
\end{aligned}
$$

PHE-14

विजान स्नातक (बी. एस.-सी.)

सत्रांत परीक्षा
जन. 2022
पी. एच. ड़.-14 : भौतिकी में गणितीय विधियाँ-III

नोट : (i) सभी प्रश्न अनिवार्य हैं।
(ii) प्रत्येक प्रश्न के अंक उसके सामने दिए गए हैं।
(iii) प्रतीकों के अपने सामान्य अर्थ हैं।

1. कोई पाँच भाग कीजिए : $5 \times 2=10$
(क) निम्नलिखित टेन्सर की कोटि बताइए तथा मक्त सचकांक और मक सचकांक की पहचान कीजिए :

$$
\mathrm{A}^{\prime i j}=\sum_{k l} \frac{\partial x_{i}^{\prime}}{\partial x_{k}} \frac{\partial x_{j}^{\prime}}{\partial x_{l}} \mathrm{~A}^{k l}
$$

(ख) सिद्ध कीजिए कि आव्यह गणन के अधीन कोटि n वाले सभी व्यत्क्रमणीय वर्ग आव्यहों के समच्चय से एक समह बनता है।
(ग) सत्यापित कीजिए कि आव्यह :

$$
\mathrm{A}=\left(\begin{array}{rr}
\frac{1}{2} & \frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right)
$$

लांबिक है।
(घ) सिद्ध कीजिए कि फलन $f(z)=|z|^{2}$ मल-बिन्द के अतिरिक्त अन्य सभी बिन्दओं पर अविश्लेषिक है।
(ङ) $z=0$ पर फलन $f(z)=\frac{\sin z}{z}$ की विचित्रता का निर्धारण कीजिए और उनका नाम बताइए।
(च) फलन $f(t)=t$ का लाप्लास रूपांतर ज्ञात कीजिए।
(छ) हर्मिट बहपदों के रोड्रिगेज सत्र :

$$
\mathrm{H}_{n}(x)=(-1)^{n} e^{x^{2}} \frac{d^{n}}{d x^{n}}\left(e^{-x^{2}}\right)
$$

का उपयोग कर $\mathrm{H}_{3}(x)$ को परिकलित कीजिए।
(ज) लागेर बहपदों $\mathrm{L}_{0}(x)$ और $\mathrm{L}_{1}(x)$ का x के साथ आलेख खींचिए।
2. कोई दो भाग कीजिए : $2 \times 5=10$
(क) सिद्ध कीजिए कि हर्मिटी आव्यह के आइगेन मान वास्तविक होते हैं।
(ख) निम्नलिखित आव्यह P के आइगेन मान और आइगेन सदिश प्राप्त कीजिए :

$$
\mathrm{P}=\left(\begin{array}{rr}
3 & 4 \\
4 & -3
\end{array}\right)
$$

(ग) यदि $\omega, 1$ का अधिकल्पित घन मल हो, तो दिखाइए कि समच्चय $\left\{1, \omega, \omega^{2}\right\}$ गणन के अधीन कोटि 3 वाला एक चक्रीय समह है।
3. कोई दो भाग कीजिए :
$2 \times 5=10$
(क) कौशी समाकल प्रमेय का कथन लिखिए। समाकल $\oint_{\mathrm{C}} \frac{d z}{1+z^{2}}$ का मान परिकलित कीजिए, जहाँ $\mathrm{C},|z|=3$ का एक वत्त है।
(ख) $z=0$ के प्रति $\log (1+z)$ की टेलर श्रेणी का निरूपण प्राप्त कीजिए।
(ग) अवशिष्ट विधि का उपयोग कर सिद्ध कीजिए कि :

$$
\int_{0}^{\infty} \frac{d \theta}{1+\sin ^{2} \theta}=\frac{\pi}{\sqrt{2}}
$$

4. कोई दो भाग कीजिए :
(क) $\cos p t$ का लाप्लास रूपांतरण ज्ञात कीजिए।
(ख) $\mathrm{F}(s)=\frac{s+1}{s^{3}+s^{2}-6 s}$ का व्यत्क्रम लाप्लास रूपांतर परिकलित कीजिए।
(ग) फलन :

$$
f(x)= \begin{cases}\cos x, & -\frac{\pi}{2}<x<\frac{\pi}{2} \\ 0, & |x|>\frac{\pi}{2}\end{cases}
$$

का फरिये कोसाइन रूपांतर प्राप्त कीजिए।
5. कोई एक भाग कीजिए :
(क) लेजान्ड्रे बहपदों के जनक फलन :

$$
g(x, t)=\frac{1}{\sqrt{1-2 t x+t^{2}}}=\sum_{n=0}^{\infty} \mathrm{P}_{n}(x) t^{n}
$$

का उपयोग कर सिद्ध कीजिए कि

$$
\begin{aligned}
n P_{n-1}(x)+(n+1) \mathrm{P}_{n+1} & (x) \\
& =(2 n+1) x \mathrm{P}_{n}(x)
\end{aligned}
$$

अतएव $\mathrm{P}_{2}(x)$ का मान प्राप्त कीजिए। $8+2$ P. T. O.
(ख) कोटि m वाले प्रथम प्रकार के बेसल फलन :

$$
\mathrm{J}_{m}(x)=\sum_{k=0}^{\infty}(-1)^{k} \frac{1}{k!\lceil(m+k+1)}
$$

$$
\left(\frac{x}{2}\right)^{2 k+m}
$$

का उपयोग कर सिद्ध कीजिए कि :

$$
\begin{aligned}
\mathrm{J}_{1 / 2}(x) & =\sqrt{\frac{2}{\pi}} x^{\frac{-1}{2}} \sin x \\
\text { और } \mathrm{J}_{-1 / 2}(x) & =\sqrt{\frac{2}{\pi}} x^{-1 / 2} \cos x \mathrm{I}
\end{aligned}
$$

