- (ii) If all the roots of a polynomial in R [x] of degree greater than one are is C\R, then the degree of the polynomial is even.
- (iii) If $S \subset \mathbf{R}, S \neq \{\}$, then Sup $(S) \in S$.

[2]

- (iv) If *f* and *g* are functions defined on] 1, 1[and $\lim_{x \to 0} f(x) = \infty$ and $\lim_{x \to 0} g(x) = \infty$, then $\lim_{x \to 0} \frac{f(x)}{g(x)} = \infty$.
- (v) If f and g are defined in an open interval containing x_0 , and f and fg are differentiable at x_0 , then g is also differentiable at x_0 .
- (vi) If f is defined in an open interval containing x_0 , and f is differentiable at x_0 , then f^n is differentiable at x_0 for any $n \in \mathbb{Z}$.
- (vii) If f is a real valued function defined on] $a, b [\subset \mathbf{R} \text{ and } f'(x_0) = 0 \text{ for some}$ $x_0 \in]a, b[$, then f has a local extremum at x_0 .

No. of Printed Pages : 15 BMTC-131

BACHELOR'S DEGREE PROGRAMME

(BDP)

Term-End Examination

June, 2022

BMTC-131 : CALCULUS

Time : 3 Hours

Maximum Marks : 100

- Note: (i) All questions/parts of the questions of Section A and Section B are compulsory.
 - (ii) Attempt any **five** questions from Section C.
 - (iii) Use of calculator is not allowed.

Section—A

- Which of the following statements are true and which are false ? Justify your answer with a short proof or a counter-example, whichever is appropriate : 20
 - (i) If $A = \{ \}$ and $B = \{1, 2\}$, then $A \times B$ has two elements.

BMTC-131

6

BMTC-131

(viii) If f_1 and f_2 are defined on an open interval I containing x_0 and $\lim_{x \to x_0} f_2(x) = 0$, then function f, defined

[3]

on I by
$$f(x) = \frac{f_1(x)}{f_2(x)}$$
, has a veritcal

asymptote at $x = x_0$.

- (ix) If a function is defined and bounded on a finite interval, it is integrable on that interval.
- (x) If f and g are integrable on a finite interval [a, b] then :

$$\int_{a}^{b} f(x) g(x) dx = \left(\int_{a}^{b} f(x) dx \right)$$
$$\left(\int_{a}^{b} g(x) dx \right)$$

Section-B

2. (a) Let U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} be the universal set. Let A = {1, 2, 3}, B = {1, 3, 4, 5}, C = {1, 4, 5, 7}. Represent the sets U, A, B and C in a Venn diagram. Also, give the set $(A \cup B) \cap C^c$ using the listing method. 4 (b) Differentiate the following functions : (i) $\sin x \ln (|1 + x|)$ (ii) $\frac{\cos x}{1 + x^2}$

[4]

(iii)
$$\tan^{-1}(1 + \cos^2 2x)$$

3. (a) Solve the following equations : 5

(i)
$$3^{x^2-3x} = \frac{1}{9}$$

(ii) $\ln(x^2+3) = \ln|5x-1| - \ln x$,

$$x > 0, x \neq \frac{1}{3}$$

- (b) Integrate the following : 5
 - (i) $\int e^{\sec x} \sec x \tan x \, dx$

(ii)
$$\int \frac{(x+1)}{(3x+1)(2x-3)} dx$$

4. (a) If the sum of two roots of the equation :

$$x^4 - 2x^3 + 4x^2 + 6x - 21 = 0$$

is zero, find all the roots of the equation. 7

[5] BMTC-131

(b) Investigate the continuity of the function $f : \mathbf{R} \to \mathbf{R}$, defined by :

$$f(x) = \begin{cases} (x-2)^2, & \text{if } x < 0 \\ (x+1), & \text{if } x \ge 0 \end{cases}.$$

Also, identity the type of discontinuity of the function, if any. 3

Section-C

(a) A spherical balloon is filled with air at the rate of 5 cm³/sec. Find the rate of increase in radius when the radius is 6 cm. (Volume

of a sphere of radius
$$r$$
 is $\frac{4}{3}\pi r^3$).

$$\int_{x}^{x^{3}} \left(t^{3} + t\right) dt$$

(c) If $f : \mathbf{N} \to \mathbf{N}$ and $g : \mathbf{N} \to \mathbf{N}$ are defined by f(x) = x + 5 and g(x) = 3x, find $g \circ f$. Check whether $g \circ f$ is a one-one function. 2

$$\lim_{\theta \to \frac{\pi}{2}} \frac{\ln \left| \theta - \frac{\pi}{2} \right|}{\tan \theta}$$

(b) Expand $\cos 4\theta$ in powers of $\cos \theta$.

BMTC-131

(c) If
$$y = \left(x + \sqrt{x^2 + a^2}\right)^n$$
, derive the relation
 $\left(x^2 + a^2\right)\frac{d^2y}{dx^2} + x\frac{dy}{dx} - n^2y = 0.$ 4

[6]

- 7. Trace the curve $y^2 = (x-1)^4 (x-2)$. State all the properties you use to trace it. 10
- 8. (a) Show that $\lim_{x\to 2} (x^3 1) = 7$ using the ε - δ definition. 5
 - (b) Find the area of the region above the line x = 2 and bounded by $y^2 = x 2$. 5
- 9. (a) Check whether the conditions of Rolle's theorem are satisfied for the function f, defined by $f(x) = x^4 3x^3 + 4x^2 6x + 4$ in the interval [1, 2]. Is the conclusion of the theorem true ? Give reasons for your answer. 4
 - (b) Find the fourth derivative of $x^2 \sin x$. 3
 - (c) Check that $f(x) = \cos^2 x$ defines a function $f: \left[0, \frac{\pi}{2}\right] \rightarrow \left[0, 1\right]$. Check that the function f is one-one and onto. 3

3

3

3

 $\mathbf{5}$

10. (a) Find the extremum points for the function f, defined by $f(x) = 3x^4 + 8x^3 - 18x^2 + 60$. Also find the values of the function at its extremum points. $\mathbf{5}$

[7]

(b) Find
$$\frac{dy}{dx}$$
 for the following :

(i)
$$y = x^{\sin x} + (\sin x)^x$$

(ii)
$$3e^x + \cos y = \sin x$$

BMTC-131

स्नातक उपाधि कार्यक्रम			
(बी. डी. पी.)			
सत्रांत परीक्षा			
जून. 2022			
बी. एम. टी. सी131 : कलन			
समय : 3 घण्टे अधिकतम अंक : 100			
नोट : (i) भाग 'अ' और भाग 'ब' के सभी प्रश्न/प्रश्नों के सभी भाग अनिवार्य हैं।			
(ii) भाग 'स' से कोई पाँच प्रश्न कीजिए।			
(iii) कैलकलेटर का प्रयोग करने की अनमति नहीं है।			
भाग—अ			
 निम्नलिखित कथनों में से कौन-से कथन सत्य और कौन-से असत्य हैं? अपने उत्तर के पक्ष में एक संक्षिप्त उपपत्ति या प्रति उदाहरण दीजिए : 20 			

(i) यदि A = $\{ \}$ और B = $\{1,2\}$ है, तो A × B में दो अवयव होंगे।

[10] BMTC-131
(vii)
$$u \leq f$$
 एक अंतराल $]a, b [\subset \mathbb{R}$ पर परिभाषित
वास्तविक मान फलन है, तो f का x_0 पर एक
स्थानीय चरममान होगा।
(viii) $u \leq f_1$ और f_2 एक विवत अंतराल I जिसमें
 x_0 है, पर परिभाषित हैं और $\lim_{x \to x_0} f_2(x) = 0$
है, तो अंतराल I पर $f(x) = \frac{f_1(x)}{f_2(x)}$ द्वारा
परिभाषित फलन f की $x = x_0$ पर एक
ऊर्ध्वाधर अनंतस्पर्शी होगी।
(ix) $u \leq u$ फलन एक परिमित अंतराल में

- ix) यदि एक फलन, एक परिमित अंतराल में परिभाषित और परिबद्ध है, तो उस अंतराल में समाकलनीय होगा।
- (x) यदि f और g परिमित अंतराल [a,b] में
 समाकलनीय हैं, तो :

 $\left(\int_{a}^{b}g(x)dx\right)$

 $\int_{a}^{b} f(x) g(x) dx = \left(\int_{a}^{b} f(x) dx \right)$

 [9] BMTC-131
 (ii) यदि R [x] में एक से अधिक घात वाली बहपद के सभी मल C\R में हैं, तो बहपद की घात सम होगी।

(iii) यदि S ⊂ R और S ≠ { } है, तो Sup(S) ∈ S |
(iv) यदि फलन f और g,] – 1,1[पर परिभाषित हैं
और
$$\lim_{x\to 0} f(x) = \infty$$
 और $\lim_{x\to 0} g(x) = \infty$ है,
तो $\lim_{x\to 0} \frac{f(x)}{g(x)} = \infty$ होगा।

- (v) यदि f और g, एक विवत अंतराल जिसमें x₀ है, पर परिभाषित हैं और f और fg,x₀ पर अवकलनीय है, तो g भी x₀ पर अवकलनीय होगा।
- (vi) यदि f एक विवत अंतराल जिसमें x₀ है, पर परिभाषित है और f, x₀ अवकलनीय है, तो fⁿ किसी भी n ∈ Z के लिए x₀ पर अवकलनीय होगा।

P. T. O.

	[11] BMTC-131	[12] BMTC-131
	भाग—ब	(ख)निम्नलिखित समाकल ज्ञात कीजिए : 5
2.	(क)मान लीजिए U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} एक समष्टीय समच्चय है। मान लीजिए A = {1, 2, 3}, B = {1, 3, 4, 5} और C = {1, 4, 5, 7} हैं।	(i) $\int e^{\sec x} \sec x \tan x dx$ (ii) $\int \frac{(x+1)}{(3x+1)(2x-3)} dx$ 4. (क)祖侯 समीकरण $x^4 - 2x^3 + 4x^2 + 6x - 21 = 0$
	समच्चयों U, A, B और C को एक वेन आरेख में	के दो मूलों का योग शून्य है, तो समीकरण के
	निरूपित कोजिए। सची-विधि का प्रयोग करके	सभी मल ज्ञात कोजिए। 7
	समच्च $(A \cup B) \cap C^c$ निकालिए। 4	(ख) $f(x) = \begin{cases} (x-2)^2, & \text{यद } x < 0 \\ (x+1), & \text{यद } x \ge 0 \end{cases}$ द्रारा
	(ख)निम्नलिखित फलनों के अवकलज ज्ञात कीजिए :	परिभाषित फलन $f: {f R} o {f R}$ की संतत की जाँच
	6	कोजिए। असंततत का प्रकार भी बताइए, यदि
	(i) $\sin x \ln (1+x)$	असतता ह।
	(ii) $\frac{\cos x}{1+x^2}$	भाग-स
	(iii) $\tan^{-1}(1 + \cos^2 2x)$	5. (क)एक गोलाकार गब्बारे में 5 cm ³ / sec की दर से
3.	(क)निम्नलिखित समीकरणों को हल कीजिए : 5	हवा भरी जाती है। त्रिज्या में वद्धि की दर ज्ञात
	(i) $3^{x^2-3x} = \frac{1}{9}$	कोजिए जबकि त्रिज्या 6 cm है। (r त्रिज्या के
	(ii) $\ln(x^2 + 3) = \ln 5x - 1 - \ln x$,	गोले का आयतन $\frac{4}{3}\pi r^3$ होता है।) 3
	$x > 0, x \neq \frac{1}{3}$	(ख) $\int_x^{x^3} (t^3 + t) dt$ का मान ज्ञात कीजिए। 5

P. T. O.

[14] BMTC-131
(क)
$$\in -\delta$$
 परिभाषा का प्रयोग करके दर्शाइए कि :

$$\int \lim_{x \to 2} (x^3 - 1) = 7$$
(ख) रेखा $x = 2$ के ऊपर और $y^2 = x - 2$ द्वारा
परिबद्ध प्रदेश का क्षेत्रफल ज्ञात कीजिए। 5
(क) अंतराल [1,2] में
 $f(x) = x^4 - 3x^3 + 4x^2 - 6x + 4$
द्वारा परिभाषित फलन f के लिए रौले प्रमेव की
सभी शतों की जाँच कीजिए। क्या प्रमेव का
नष्कर्ष सत्य है ? अपने उत्तर का कारण दीजिए।4
(ख) $x^2 \sin x$ का चौथा अवकलज ज्ञात कीजिए। 3
(ग) जाँच कीजिए कि $f(x) = \cos^2 x$, फलन
 $f: [0, \frac{\pi}{2}] \rightarrow [0,1]$ को परिभाषित करता है।
जाँच कीजिए कि फलन f , 1-1 और आच्छारक
है। 3

8.

9.

[13]BMTC-131
$$(\Pi) f(x) = x + 5$$
 और $g(x) = 3x$ द्वारा परिभाषितफलन क्रमश: $f: N \rightarrow N$ और $g: N \rightarrow N$ हैं। $g \circ f$ ज्ञात कीजए। जाँच कीजिए कि फलन $g \circ f, 1-1$ है।2

6. (क)
$$\lim_{\theta \to \frac{\pi}{2}} \frac{\ln \left| \theta - \frac{\pi}{2} \right|}{\tan \theta}$$
 ज्ञात कीजिए। 3

(ख) $\cos 4\theta$ का $\cos \theta$ की घातों में विस्तार कीजिए।

$$(1) \overline{z} = \left(x + \sqrt{x^2 + a^2}\right)^n \quad \overrightarrow{b}, \quad \overrightarrow{c} \quad \overrightarrow{c}$$
$$\left(x^2 + a^2\right) \frac{d^2y}{dx^2} + x \frac{dy}{dx} - n^2y = 0 \quad \overrightarrow{c}$$
को व्यत्पन्न
कीजिए। 4

7. वक्र $y^2 = (x-1)^4 (x-2)$ का अनरेखण कीजिए और अनरेखण में प्रयोग किए गए सभी गणधर्म लिखिए।

10

P. T. O.

[15] BMTC-131
10. (क)
$$f(x) = 3x^4 + 8x^3 - 18x^2 + 60$$
 द्वारा परिभाषित
फलन f के चरम बिन्द ज्ञात कीजिए। इन चरम
बिन्दओं पर फलन के मान भी ज्ञात कीजिए। 5
(ख)निम्नलिखित के लिए $\frac{dy}{dx}$ ज्ञात कीजिए : 5
(i) $y = x^{\sin x} + (\sin x)^x$
(ii) $3e^x + \cos y = \sin x$