No. of Printed Pages : 15

BMTC-131

BACHELOR'S DEGREE PROGRAMME

(BDP)

Term-End Examination

June, 2022
BMTC-131 : CALCULUS
Time : 3 Hours
Maximum Marks : 100

Note: (i) All questions/parts of the questions of Section A and Section B are compulsory.
(ii) Attempt any five questions from Section C.
(iii) Use of calculator is not allowed.

Section-A

1. Which of the following statements are true and which are false ? Justify your answer with a short proof or a counter-example, whichever is appropriate :
(i) If $\mathrm{A}=\{ \}$ and $\mathrm{B}=\{1,2\}$, then $\mathrm{A} \times \mathrm{B}$ has two elements.
(ii) If all the roots of a polynomial in $\mathbf{R}[x]$ of degree greater than one are is $\mathbf{C} \backslash \mathbf{R}$, then the degree of the polynomial is even.
(iii) If $S \subset \mathbf{R}, \mathrm{~S} \neq\{ \}$, then $\operatorname{Sup}(\mathrm{S}) \in \mathrm{S}$.
(iv) If f and g are functions defined on] $-1,1$ [and $\lim _{x \rightarrow 0} f(x)=\infty$ and $\lim _{x \rightarrow 0} g(x)=\infty$, then $\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=\infty$.
(v) If f and g are defined in an open interval containing x_{0}, and f and $f g$ are differentiable at x_{0}, then g is also differentiable at x_{0}.
(vi) If f is defined in an open interval containing x_{0}, and f is differentiable at x_{0}, then f^{n} is differentiable at x_{0} for any $n \in \mathbf{Z}$.
(vii) If f is a real valued function defined on] $a, b\left[\subset \mathbf{R}\right.$ and $f^{\prime}\left(x_{0}\right)=0$ for some $\left.x_{0} \in\right] a, b$ [, then f has a local extremum at x_{0}.
(viii) If f_{1} and f_{2} are defined on an open interval I containing x_{0} and $\lim _{x \rightarrow x_{0}} f_{2}(x)=0$, then function f, defined on I by $f(x)=\frac{f_{1}(x)}{f_{2}(x)}$, has a veritcal asymptote at $x=x_{0}$.
(ix) If a function is defined and bounded on a finite interval, it is integrable on that interval.
(x) If f and g are integrable on a finite interval $[a, b]$ then :

$$
\int_{a}^{b} f(x) g(x) d x=\left(\int_{a}^{b} f(x) d x\right)
$$

$$
\left(\int_{a}^{b} g(x) d x\right)
$$

Section-B

2. (a) Let $U=\{1,2,3,4,5,6,7,8,9,10\}$ be the universal set. Let $\mathrm{A}=\{1,2,3\}, \mathrm{B}=\{1,3,4,5\}$, $\mathrm{C}=\{1,4,5,7\}$. Represent the sets U, A, B and C in a Venn diagram. Also, give the set $(\mathrm{A} \cup \mathrm{B}) \cap \mathrm{C}^{c}$ using the listing method. 4
(b) Differentiate the following functions: 6
(i) $\sin x \ln (|1+x|)$
(ii) $\frac{\cos x}{1+x^{2}}$
(iii) $\tan ^{-1}\left(1+\cos ^{2} 2 x\right)$
3. (a) Solve the following equations:
(i) $3^{x^{2}-3 x}=\frac{1}{9}$
(ii) $\ln \left(x^{2}+3\right)=\ln |5 x-1|-\ln x$,

$$
x>0, x \neq \frac{1}{3}
$$

(b) Integrate the following:
(i) $\int e^{\sec x} \sec x \tan x d x$
(ii) $\int \frac{(x+1)}{(3 x+1)(2 x-3)} d x$
4. (a) If the sum of two roots of the equation:

$$
x^{4}-2 x^{3}+4 x^{2}+6 x-21=0
$$

is zero, find all the roots of the equation. 7
(b) Investigate the continuity of the function $f: \mathbf{R} \rightarrow \mathbf{R}$, defined by :

$$
f(x)= \begin{cases}(x-2)^{2}, & \text { if } x<0 \\ (x+1), & \text { if } x \geq 0\end{cases}
$$

Also, identity the type of discontinuity of the function, if any.

3

Section-C

5. (a) A spherical balloon is filled with air at the rate of $5 \mathrm{~cm}^{3} / \mathrm{sec}$. Find the rate of increase in radius when the radius is 6 cm . (Volume of a sphere of radius r is $\frac{4}{3} \pi r^{3}$).
(b) Find:

$$
\int_{x}^{x^{3}}\left(t^{3}+t\right) d t
$$

(c) If $f: \mathbf{N} \rightarrow \mathbf{N}$ and $g: \mathbf{N} \rightarrow \mathbf{N}$ are defined by $f(x)=x+5$ and $g(x)=3 x$, find g o f. Check whether g of is a one-one function. 2
6. (a) Find:

3

$$
\lim _{\theta \rightarrow \frac{\pi}{2}} \frac{\ln \left|\theta-\frac{\pi}{2}\right|}{\tan \theta}
$$

(b) Expand $\cos 4 \theta$ in powers of $\cos \theta$.
(c) If $y=\left(x+\sqrt{x^{2}+a^{2}}\right)^{n}$, derive the relation

$$
\begin{equation*}
\left(x^{2}+a^{2}\right) \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-n^{2} y=0 \tag{4}
\end{equation*}
$$

7. Trace the curve $y^{2}=(x-1)^{4}(x-2)$. State all the properties you use to trace it.
8. (a) Show that $\lim _{x \rightarrow 2}\left(x^{3}-1\right)=7$ using the $\varepsilon-\delta$ definition.
(b) Find the area of the region above the line $x=2$ and bounded by $y^{2}=x-2$.
9. (a) Check whether the conditions of Rolle's theorem are satisfied for the function f, defined by $f(x)=x^{4}-3 x^{3}+4 x^{2}-6 x+4$ in the interval [1, 2]. Is the conclusion of the theorem true? Give reasons for your answer.
(b) Find the fourth derivative of $x^{2} \sin x$.
(c) Check that $f(x)=\cos ^{2} x$ defines a function $f:\left[0, \frac{\pi}{2}\right] \rightarrow[0,1]$. Check that the function f is one-one and onto.
10. (a) Find the extremum points for the function f, defined by $f(x)=3 x^{4}+8 x^{3}-18 x^{2}+60$. Also find the values of the function at its extremum points.
(b) Find $\frac{d y}{d x}$ for the following:
(i) $y=x^{\sin x}+(\sin x)^{x}$
(ii) $3 e^{x}+\cos y=\sin x$

BMTC-131

स्नातक उपाधि कार्यक्रम

(बी. डी. पी.)
सत्रांत परीक्षा
जून. 2022
बी. एम. टी. सी.-131 : कलन
समय : 3 घण्टे
अधिकतम अंक : 100
नोट : (i) भाग 'अ' और भाग 'ब' के सभी प्रश्न/प्रश्नों के सभी भाग अनिवार्य हैं।
(ii) भाग 'स' से कोई पाँच प्रश्न कीजिए।
(iii) कैलकलेटर का प्रयोग करने की अनमति नहीं है।

भाग-अ

1. निम्नलिखित कथनों में से कौन-से कथन सत्य और कौन-से असत्य हैं? अपने उत्तर के पक्ष में एक संक्षिप्त उपपत्ति या प्रति उदाहरण दीजिए :20
(i) यदि $\mathrm{A}=\{ \}$ और $\mathrm{B}=\{1,2\}$ है, तो $\mathrm{A} \times \mathrm{B}$ में दो अवयव होंगे।
(ii) यदि $\mathbf{R}[x]$ में एक से अधिक घात वाली बहपद के सभी मल $\mathbf{C} \backslash \mathbf{R}$ में हैं, तो बहपद की घात सम होगी।
(iii) यदि $\mathrm{S} \subset \mathbf{R}$ और $\mathrm{S} \neq\{ \}$ हैं, तो $\operatorname{Sup}(\mathrm{S}) \in \mathrm{S}$ ।
(iv) यदि फलन f और $g,]-1,1[$ पर परिभाषित हैं और $\lim _{x \rightarrow 0} f(x)=\infty$ और $\lim _{x \rightarrow 0} g(x)=\infty$ है, तो $\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=\infty$ होगा।
(v) यदि f और g, एक विवत अंतराल जिसमें x_{0} है, पर परिभाषित हैं और f और $f g, x_{0}$ पर अवकलनीय है, तो g भी x_{0} पर अवकलनीय होगा।
(vi) यदि f एक विवत अंतराल जिसमें x_{0} है, पर परिभाषित है और f, x_{0} अवकलनीय है, तो f^{n} किसी भी $n \in \mathbf{Z}$ के लिए x_{0} पर अवकलनीय होगा।
(vii) यदि f एक अंतराल $] a, b[\subset \mathbf{R}$ पर परिभाषित वास्तविक मान फलन है, तो f का x_{0} पर एक स्थानीय चरममान होगा।
(viii)यदि f_{1} और f_{2} एक विवत अंतराल I जिसमें x_{0} है, पर परिभाषित हैं और $\lim _{x \rightarrow x_{0}} f_{2}(x)=0$

है, तो अंतराल I पर $f(x)=\frac{f_{1}(x)}{f_{2}(x)}$ द्वारा परिभाषित फलन f की $x=x_{0}$ पर एक ऊर्ध्वाधर अनंतस्पर्शी होगी।
(ix) यदि एक फलन, एक परिमित अंतराल में परिभाषित और परिबद्ध है, तो उस अंतराल में समाकलनीय होगा।
(x) यदि f और g परिमित अंतराल $[a, b]$ में समाकलनीय हैं, तो :
$\int_{a}^{b} f(x) g(x) d x=\left(\int_{a}^{b} f(x) d x\right)$

$$
\left(\int_{a}^{b} g(x) d x\right)
$$

2. (क) मान लीजिए $\mathrm{U}=\{1,2,3,4,5,6,7,8,9,10\}$ एक समष्टीय समच्चय है। मान लीजिए $\mathrm{A}=\{1,2,3\}$, $\mathrm{B}=\{1,3,4,5\}$ और $\mathrm{C}=\{1,4,5,7\}$ हैं। समच्चयों $\mathrm{U}, \mathrm{A}, \mathrm{B}$ और C को एक वेन आरेख में निरूपित कीजिए। सची-विधि का प्रयोग करके समच्च $(\mathrm{A} \cup \mathrm{B}) \cap \mathrm{C}^{c}$ निकालिए। 4
(ख) निम्नलिखित फलनों के अवकलज ज्ञात कीजिए :
(i) $\quad \sin x \ln (|1+x|)$
(ii) $\frac{\cos x}{1+x^{2}}$
(iii) $\tan ^{-1}\left(1+\cos ^{2} 2 x\right)$
3. (क)निम्नलिखित समीकरणों को हल कीजिए : 5
(i) $3^{x^{2}-3 x}=\frac{1}{9}$
(ii) $\ln \left(x^{2}+3\right)=\ln |5 x-1|-\ln x$,

$$
x>0, x \neq \frac{1}{3}
$$

(ख) निम्नलिखित समाकल ज्ञात कीजिए :
(i) $\int e^{\sec x} \sec x \tan x d x$
(ii) $\int \frac{(x+1)}{(3 x+1)(2 x-3)} d x$
4. (क) यदि समीकरण $x^{4}-2 x^{3}+4 x^{2}+6 x-21=0$ के दो मूलों का योग शून्य है, तो समीकरण के सभी मल ज्ञात कीजिए।
(ख) $f(x)= \begin{cases}(x-2)^{2}, & \text { यदि } x<0 \\ (x+1), & \text { यदि } x \geq 0\end{cases}$ द्वारा परिभाषित फलन $f: \mathbf{R} \rightarrow \mathbf{R}$ की संतत की जाँच कीजिए। असंततत का प्रकार भी बताइए, यदि असंतता है।

3

भाग—स

5. (क) एक गोलाकार गब्बारे में $5 \mathrm{~cm}^{3} / \mathrm{sec}$ की दर से हवा भरी जाती है। त्रिज्या में वद्धि की दर ज्ञात कीजिए जबकि त्रिज्या 6 cm है। $(r$ त्रिज्या के गोले का आयतन $\frac{4}{3} \pi r^{3}$ होता है।)
(ख) $\int_{x}^{x^{3}}\left(t^{3}+t\right) d t$ का मान ज्ञात कीजिए।
5
(ग) $f(x)=x+5$ और $g(x)=3 x$ द्वारा परिभाषित फलन क्रमश: $f: \mathbf{N} \rightarrow \mathbf{N}$ और $g: \mathbf{N} \rightarrow \mathbf{N}$ हैं। g of ज्ञात कीजए। जाँच कीजिए कि फलन g o $f, 1-1$ है।
6. (क) $\lim _{\theta \rightarrow \frac{\pi}{2}} \frac{\ln \left|\theta-\frac{\pi}{2}\right|}{\tan \theta}$ ज्ञात कीजिए।
(ख) $\cos 4 \theta$ का $\cos \theta$ की घातों में विस्तार कीजिए।

3
(ग) यदि $y=\left(x+\sqrt{x^{2}+a^{2}}\right)^{n}$ है, तो संबंध $\left(x^{2}+a^{2}\right) \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-n^{2} y=0$ को व्यत्पन्न कीजिए। 4
7. वक्र $y^{2}=(x-1)^{4}(x-2)$ का अनरेखण कीजिए और अनरेखण में प्रयोग किए गए सभी गणधर्म लिखिए।
8. (क) $\in-\delta$ परिभाषा का प्रयोग करके दर्शाइए कि :

$$
\begin{equation*}
\lim _{x \rightarrow 2}\left(x^{3}-1\right)=7 \tag{5}
\end{equation*}
$$

(ख) रेखा $x=2$ के ऊपर और $y^{2}=x-2$ द्वारा परिबद्ध प्रदेश का क्षेत्रफल ज्ञात कीजिए।

5
9. (क)अंतराल $[1,2]$ में

$$
f(x)=x^{4}-3 x^{3}+4 x^{2}-6 x+4
$$

द्वारा परिभाषित फलन f के लिए रौले प्रमेय की सभी शर्तों की जाँच कीजिए। क्या प्रमेय का निष्कर्ष सत्य है ? अपने उत्तर का कारण दीजिए।4 (ख) $x^{2} \sin x$ का चौथा अवकलज ज्ञात कीजिए। 3
(ग) जाँच कीजिए कि $f(x)=\cos ^{2} x$, फलन $f:\left[0, \frac{\pi}{2}\right] \rightarrow[0,1]$ को परिभाषित करता है। जाँच कीजिए कि फलन $f, 1-1$ और आच्छादक है।
10. (क) $f(x)=3 x^{4}+8 x^{3}-18 x^{2}+60$ द्वारा परिभाषित फलन f के चरम बिन्द ज्ञात कीजिए। इन चरम बिन्दओं पर फलन के मान भी ज्ञात कीजिए। 5 (ख) निम्नलिखित के लिए $\frac{d y}{d x}$ ज्ञात कीजिए : 5
(i) $y=x^{\sin x}+(\sin x)^{x}$
(ii) $3 e^{x}+\cos y=\sin x$

