# MASTER IN COMPUTER APPLICATIONS (MCA) (REVISED) 

## Term-End Examination <br> June, 2022

## MCS-033 : ADV ANCED DISCRETE MATHEMATICS

Time : 2 Hours
Maximum Marks : 50
Note: (i) Question No. 1 is compulsory.
(ii) Answer any three questions from the rest.

1. (a) Find the order and degree of the following recurrence relations :
(i) $a_{n}=a^{2}{ }_{n-1}+a_{n-2} a_{n-3} a_{n-4}$
(ii) $a_{n}=\sqrt{a_{n-1}}+a_{n-2}^{2}$
(b) Solve the following recurrence relation using characteristic equation :

$$
\begin{gathered}
t_{n}=4 t_{n-1}-3 t_{n-2} \quad \text { for } n>1, \\
t_{0}=0, t_{1}=1 .
\end{gathered}
$$

P. T. O.
(c) What is generating function ? Define exponential generating function. 4
(d) Is every subgraph of a regular graph, regular? Give reasons for your answer. 4
(e) Show that $\mathrm{K}_{5}$ is not a planar graph. 3
2. (a) What is bipartite graph ? What is the chromatic number of any bipartite graph ? Show that $\mathrm{C}_{6}$ is a bipartite and $\mathrm{K}_{3}$ is not a bipartite graph.
(b) Draw at least two non-isomorphic graphs on four vertices.
3. (a) Solve the following recurrence relation using substitution method :

$$
a_{n}=a_{n-1}+2, \quad n \geq 2
$$

Subject to the initial condition $\alpha_{1}=3$.
(b) Construct a non-Hamiltonian graph on five vertices.
4. (a) Define the complement of a graph. Draw the complement of the given graph :

(b) Solve the recurrence relation:

$$
6 a_{n}-7 a_{n-1}+a_{n-3}=4, \quad n \geq 3
$$

if

$$
\begin{aligned}
& a_{0}=14 \\
& a_{1}=1 \\
& a_{2}=5
\end{aligned}
$$

5. (a) Consider the following graph :

(i) Find $\delta(\mathrm{G})$ and $\Delta(\mathrm{G})$.
(ii) Draw a spanning tree of the graph.
(iii) Find a Euler path in the graph, if any.
(b) State Dirac's and Ore's theorems.

4

