MASTER OF COMPUTER APPLICATION (MCA) (REVISED)
 Term-End Examination
 June, 2022
 MCS-031 : DESIGN AND ANALYSIS OF ALGORITHMS

Time : 3 Hours
Maximum Marks : 100

Note : Question No. 1 is compulsory. Attempt any three questions from the remaining questions.

1. (a) Write an algorithm that finds the real roots, if any, of a quadratic equation: 5

$$
a x^{2}+b x+c=0
$$

where a, b and c are real numbers.
(b) Write and explain recursive algorithm to find the factorial of any given number $n \geq 0$.
(c) Prove that $f(x)=2 n^{3}+3 n+5$ is $\mathrm{O}\left(n^{3}\right)$, where O indicates "Big-oh" notation. 5
P. T. 0.
(d) Show that Strassen's matrix multiplication method takes $\mathrm{O}\left(n^{2.81}\right)$ to multiply two matrices A and B of order ($n \times n$).
(e) Differentiate between Divide and Conquer, and dynamics programming technique for solving problems.
(f) Write binary search algorithm and find its time complexity in the worst case.
(g) What is Push Down Automata? How is it different from Finite Automata?
(h) Write a regular expression and design a finite automata to generate all strings of odd lengths over the alphabet $\Sigma=\{a, b\}$. 5
2. (a) Write Prim's algorithm for finding minimum cost spanning tree (MST). Obtain the minimum cost spanning tree (MST) for the following graph using Prim's algorithm (' a ' is starting vertex) :

(b) Define a Breadth-First Search (BFS). Give the breadth first traversal for the undirected graph given below starting from vertex ' ${ }^{\prime}$ '.,

(c) Multiply 2345×1263 using Karatsuba's method.
3. (a) Sort the following elements using Heap sort :

$$
10,28,46,39,15,12,18,9,56,2
$$

Show each step involved in creation and processing of heap.
(b) Explain how dynamic progamming can be used to solve matrix chain multiplication. Apply the algorithm to multiply the following :
4 matrices < $\mathrm{M}_{1}, \mathrm{M}_{2}, \mathrm{M}_{3}, \mathrm{M}_{4}>$ with dimensions $<(15,3)(3,10),(10,2)$, $(2,5)>$.
P. T. O.
4. (a) Write the Context-Free Grammar (CFG) for the following :
(i) $\mathrm{L}=\left\{a^{n} b^{m} c^{m}: n, m \geq 1\right\}$
(ii) $\mathrm{L}=\left\{a^{n} b^{n} c^{m} d^{m}: m, n \geq 0\right\}$
(b) What is NP-complete problem ? Is it necessary that every NP-complete problem must also be a NP-hard problem ? Justify. 5
(c) Explain Chomsky's classification of grammars.
5. (a) Explain the term 'polynomial time reduction'. Explain how the CLIQUE problem can be transformed to the vertex cover problem (VCP).
(b) Design a Turing Machine (TM) for the language :

$$
\mathrm{L}\left\{\omega \subset w^{\mathrm{R}}: \omega \in\{a, b\}^{*}\right\}
$$

where ω^{R} is the reverse of ω.
(c) What is undecidability ? Give an example for an undecidable problem.

