## MCA (Revised) / BCA (Revised)

# Term-End Examination 

## June, 2022

## MCS-013 : DISCRETE MATHEMATICS

Time: 2 hours
Maximum Marks : 50
Note: Question no. 1 is compulsory. Attempt any three questions from the rest.

1. (a) Use pigeonhole principle to find the minimum number of cars that will have same colour; if 20 cars are painted using 6 colours.
(b) Show that $\sqrt{3}$ is irrational.
(c) Draw the logic circuit for the following Boolean expression :

$$
\left(\mathrm{X}_{1} \wedge \mathrm{X}_{2} \vee \mathrm{X}_{3}^{\prime}\right) \vee\left(\mathrm{X}_{1}^{\prime} \vee \mathrm{X}_{2}^{\prime} \wedge \mathrm{X}_{3}\right)
$$

(d) Write the set expression (shaded part) for the following Venn diagrams :


(e) Write suitable mathematical statement that can be represented by $(\forall \mathrm{x})(\forall \mathrm{y})(\exists \mathrm{z}) \mathrm{P}$.
(f) Disprove that $(\forall \mathrm{a} \in \mathrm{R})(\forall \mathrm{b} \in \mathrm{R})\left[\left(\mathrm{a}^{2}=\mathrm{b}^{2}\right) \Rightarrow(\mathrm{a}=\mathrm{b})\right]$, using a counter-example.
(g) There are 5 women and 6 men. A committee has to be formed of 3 people. In how many ways can this be done if at least one woman should be there in the committee?
2. (a) Prove using mathematical induction that

$$
(1+\mathrm{x})^{\mathrm{n}}>1+\mathrm{nx} \text { for all } \mathrm{x}>0 \text { and } \mathrm{n}>1 .
$$

(b) What is proper subset? Explain with the help of an example.
(c) Show $p \wedge(p \vee q) \leftrightarrow p$ is a tautology.
3. (a) Every function is a relation. Is every relation a function? Why?
(b) Explain circular permutation with the help of an example.
(c) Find the Boolean expression of Q in the logic circuit given below :

4. (a) If $A$ and $B$ are two mutually exclusive events such that $\mathrm{P}(\mathrm{A})=0.4$ and $\mathrm{P}(\mathrm{B})=0 \cdot 2$, what is the probability that either A or B does not occur?
(b) Give the geometric representation of $\{3\} \times$ R.
(c) Present a direct proof of the statement "Square of an odd integer is odd."
(d) Find the inverse of the function

$$
\begin{equation*}
f(x)=\frac{x-4}{x-3} \tag{3}
\end{equation*}
$$

5. (a) Show that

$$
\begin{gathered}
C(n, m) C(m, k)=C(n, k) C(n-k, m-k) \\
\text { for } 1 \leq k \leq m \leq n .
\end{gathered}
$$

(b) How many 3-letter words can be formed from the letters of the word "HAPPY"?
(c) What is contradiction ? Show whether $\mathrm{p} \wedge \mathrm{q} \wedge \sim \mathrm{p}$ is a contradiction or not.
(d) Draw the Venn diagram for the expression $A \cup B \cap C$.

