BACHELOR OF COMPUTER

APPLICATIONS (BCA) (REVISED)

Term-End Examination
June, 2022
BCS-054 : COMPUTER ORIENTED NUMERICAL TECHNIQUES

Note: (i) Any calculator is allowed during examination.
(ii) Question No. 1 is compulsory. Attempt any three more from the next four questions.

1. (a) Solve the following system of equations using Gauss Elimination method :

$$
\begin{aligned}
x+2 y+z & =3 \\
2 x+3 y+3 z & =10 \\
3 x-y+2 z & =13
\end{aligned}
$$

P. T. O.
(b) Perform two iterations, using Gauss-Seidel iteration method to solve the following system of equations :

$$
\begin{aligned}
10 x-2 y-z-w & =3 \\
-2 x+10 y-z-w & =15 \\
-x-y+10 z-2 w & =27 \\
-x-y-2 z+10 w & =-9
\end{aligned}
$$

(c) Find the root of the equation $x^{3}-x-1=0$, lying between 1 and 2 , by using Bisection method (perform three iterations).
(d) Verify the relation $\Delta-\nabla=\Delta \nabla$, where Δ and ∇ are forward and backward differencing operations, respectively.
(e) Write Stirling's formula of numerical differentiation. Briefly discuss its application with suitable example.
(f) Find $f(5)$ by Lagrange's interpolation method, for the following data :

x	$f(x)$
1	0
3	18
4	48
6	180
10	900

(g) Compute the integral of function $f(x)$ using Trapezoidal rule, the value of $f(x)$ for values of x between 0 and 1.0 are tabulated below :

x	$f(x)$
0	1
0.1	1.2
0.2	1.4
0.3	1.6
0.4	1.8
0.5	2.0
0.6	2.2
0.7	2.4
0.8	2.6
0.9	2.8
1.0	3.0

2. (a) Perform the following conversions:
(i) $(-349)_{10}$ to its binary equivalent
(ii) $(-0.3125)_{10}$ to its binary equivalent
(b) Compare direct methods and iterative methods of solving linear algebraic equations. Give merits and demerits of each. Give one name of the methods for each category i.e. direct and indirect methods.
P. T. O.
(c) Explain Newton-Raphson's iterative method for finding the q th root of a positive number N . Also find the cube root of 10 correct upto 3 places of decimal, taking initial estimate as 2.0.
3. (a) Verify the following :
(i) $\Delta f(x)=0$ when $f(x)=c$, a constant
(ii) $\Delta^{2} f(x)=0$ when $f(x)=x$, an identity function.
(iii) $\mathrm{E}^{2} x^{2}=x^{2}+8 x+16$, when the value of x varies by a constant increment of 2 .
(b) Construct a difference table for data given below :

x	$f(x)$
1	7
2	13
3	18
4	25

Now perform the following :
(i) Highlight the forward differences for f (1) by drawing circle around the values.
(ii) Highlight the backward differences for f (4) by drawing square around the values.
(iii) Find the highest degree of polynomial that can be generated.
(c) Write short notes on the following in the context of floating point representation :
(i) Precision
(ii) Accuracy
(iii) Significant digit

Give suitable example of each. $3+3+1$
4. (a) If $f(x)=x^{3}$, find the first and second divided difference of f for $x=\{a, b, c\}$.
(b) Evaluate the integral $\mathrm{I}=\int_{0}^{0.8} \frac{d x}{\sqrt{1+x}}$ by Simpson's $1 / 3$ rule, divide the interval 0 to 0.8 to 4 equal subintervals. (Compute upto 5 decimal places only).
(c) Use modified Euler's method to find the value of y for $x=0.1$ and 0.2 from the differential equation $\frac{d y}{d x}=x^{2}+y^{2}-2 ;$ $y(0)=1$. (Compute upto 5 places of decimal only).
5. (a) Using Runge-Kutta method of order 4, obtain y when $x=1.1$, given that $y=1.2$ when $x=1, y$ satisfies the equation $\frac{d y}{d x}=3 x+y^{2}$.
(b) Write formula for Euler's method and use it to find the solution of equation $y^{\prime}=f(t, y)=t+y$ given $y(0)=1$. Find the solution on [0, 0.8] interval with step size $h=0.2$. 10

