M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

Term-End Examination

June, 2021

MMTE-006 : CRYPTOGRAPHY

Time : 2 hours

Maximum Marks : 50 (Weightage : 50%)

Note :

(:)	Oursetien		:-	~~~···	
(i)	Question	no. 1	ιs	comput	sory.

(ii) Answer any **four** questions from questions no. 2 to 6.

(iii) The use of calculators is **not** allowed.

- State whether the following statements are *True* or *False*. Give reasons for your answers. 10
 - (i) $(Z_{16}, +, \cdot)$ is a field.
 - (ii) The main purpose of a cryptographic hash function is compression of messages.
 - (iii) RSA is a block cipher.

MMTE-006

- (iv) The Repeated Squaring Algorithm is a probabilistic algorithm.
- (v) DES is a secure tool for encryption.
- 2. (a) Encrypt the message "PROTECT YOURSELF WITH A MASK" using the affine cipher $x \mapsto (7x + 5) \mod 26$ and the encoding of characters

 $A \rightarrow 0, B \rightarrow 1, C \rightarrow 2, ..., Z \rightarrow 25.$

What is the key space of the affine cipher defined over \mathbb{Z} ?

4

3

- (b) Find the decryption key d of the RSA cryptosystem when the public key is n = 77 and e = 43.
- (c) Encrypt the message 1101 0011 1001 using the toy block cipher with the key 101 110 011.

c	, [101	010	001	110	011	100	111	000
\mathfrak{S}_1	$\mathbf{S}_1 \begin{bmatrix} 101\\001 \end{bmatrix}$	100	110	010	000	111	101	011
c	$S_2 \begin{bmatrix} 100\\101 \end{bmatrix}$	000	110	101	111	001	011	010]
ĸ	2 101	011	000	111	110	010	001	100

3. (a) Let $f(x) = x^4 + x + 1 \in \mathbb{F}_2[x]$. We represent the field \mathbb{F}_2 by $\mathbb{F}_2[x]/\langle f(x) \rangle$ and we write $\gamma = x + \langle f(x) \rangle$. Use the table given below and construct corresponding logarithm and antilogarithm tables :

i	γ^{i}	Vector	i	γ^{i}	Vector
0	1	(0,0,0,1)	8	$\gamma^2 + 1$	(0,1,0,1)
1	γ	(0,0,1,0)	9	$\gamma^3 + \gamma$	(1,0,1,0)
2	γ^2	(0,1,0,0)	10	$\gamma^2 + \gamma + 1$	(0, 1, 1, 1)
3	γ^3	(1,0,0,0)	11	$\gamma^3 + \gamma^2 + \gamma$	(1,1,1,0)
4	γ + 1	(0,0,1,1)	12	$\gamma^3+\gamma^2+\gamma+1$	(1, 1, 1, 1)
5	$\gamma^2 + \gamma$	(0,1,1,0)	13	$\gamma^3 + \gamma^2 + 1$	(1,1,0,1)
6	$\gamma^3 + \gamma^2$	(1,1,0,0)	14	γ^3 + 1	(1,0,0,1)
7	$\gamma^3 + \gamma + 1$	(1,0,1,1)			

Compute $\frac{(\gamma^4 + \gamma^2 + 1) + (\gamma^3 + \gamma)}{(1 + \gamma + \gamma^3)(1 + \gamma^2 + \gamma^7)}$ using the

logarithm and antilogarithm tables.

- (b) Suppose Lisa sets up an El Gamal cryptosystem with p = 19, 2 as the primitive root and secret value 5.
 - (i) What values should she make public ?
 - (ii) Balu uses the system and sends the pair(14, 17). Find the message. 4

MMTE-006

P.T.O.

- (a) Prove that if n has k distinct odd prime factors, then 2^k|n.
 - (b) Susheela wants to use the Digital Signature Algorithm for signing messages. She chooses q = 11, p = 23, g = 5, and the secret value 3. Alia wants to sign the message M = 7. For signing she chooses the value k = 2. Find the digital signature.
 - (c) Give an advantage of the OFB mode of operation over the CFB mode. Also explain a disadvantage of the OFB mode.
- 5. (a) Apply the poker test to test the randomness of the following sequence with level of significance $\alpha = 0.05$.

[You may find the following values useful : $\chi^2_{0.05, 1} = 3.84146$, $\chi^2_{0.05, 3} = 7.81473$, $\chi^2_{0.05, 4} = 9.48773$]

(b) Check whether the polynomial $x^6 + x^5 + 1 \in \mathbb{F}_2[x]$ is irreducible. 5

MMTE-006

4

3

4

3

- 6. (a) Solve the equation $5^x \equiv 3 \pmod{23}$ using the baby-step giant-step method.
 - (b) Find a recurrence that generates the sequence 110110110110110.

5