M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)
 M.Sc. (MACS)
 Term-End Examination

June, 2021

MMTE-006 : CRYPTOGRAPHY

Time: 2 hours
Maximum Marks : 50
(Weightage : 50\%)
Note:
(i) Question no. 1 is compulsory.
(ii) Answer any four questions from questions no. 2 to 6 .
(iii) The use of calculators is not allowed.

1. State whether the following statements are True or False. Give reasons for your answers.
(i) $\left(\mathrm{Z}_{16},+, \cdot\right)$ is a field.
(ii) The main purpose of a cryptographic hash function is compression of messages.
(iii) RSA is a block cipher.
(iv) The Repeated Squaring Algorithm is a probabilistic algorithm.
(v) DES is a secure tool for encryption.
2. (a) Encrypt the message "PROTECT YOURSELF WITH A MASK" using the affine cipher $\mathrm{x} \mapsto(7 \mathrm{x}+5) \bmod 26$ and the encoding of characters

$$
\mathrm{A} \rightarrow 0, \mathrm{~B} \rightarrow 1, \mathrm{C} \rightarrow 2, \ldots, \mathrm{Z} \rightarrow 25
$$

What is the key space of the affine cipher defined over \mathbb{Z} ?
(b) Find the decryption key d of the RSA cryptosystem when the public key is $\mathrm{n}=77$ and $\mathrm{e}=43$.
(c) Encrypt the message 110100111001 using the toy block cipher with the key 101110011.
$\mathrm{S}_{1}\left[\begin{array}{llllllll}101 & 010 & 001 & 110 & 011 & 100 & 111 & 000 \\ 001 & 100 & 110 & 010 & 000 & 111 & 101 & 011\end{array}\right]$
$\mathrm{S}_{2}\left[\begin{array}{llllllll}100 & 000 & 110 & 101 & 111 & 001 & 011 & 010 \\ 101 & 011 & 000 & 111 & 110 & 010 & 001 & 100\end{array}\right]$
3. (a) Let $f(x)=x^{4}+x+1 \in \mathbb{F}_{2}[x]$. We represent the field \mathbb{F}_{2} by $\mathbb{F}_{2}[\mathrm{x}] /\langle\mathrm{f}(\mathrm{x})\rangle$ and we write $\gamma=\mathrm{x}+\langle\mathrm{f}(\mathrm{x})\rangle$. Use the table given below and construct corresponding logarithm and antilogarithm tables :

i	γ^{i}	Vector	i	γ^{i}	Vector
0	1	$(0,0,0,1)$	8	$\gamma^{2}+1$	$(0,1,0,1)$
1	γ	$(0,0,1,0)$	9	$\gamma^{3}+\gamma$	$(1,0,1,0)$
2	γ^{2}	$(0,1,0,0)$	10	$\gamma^{2}+\gamma+1$	$(0,1,1,1)$
3	γ^{3}	$(1,0,0,0)$	11	$\gamma^{3}+\gamma^{2}+\gamma$	$(1,1,1,0)$
4	$\gamma+1$	$(0,0,1,1)$	12	$\gamma^{3}+\gamma^{2}+\gamma+1$	$(1,1,1,1)$
5	$\gamma^{2}+\gamma$	$(0,1,1,0)$	13	$\gamma^{3}+\gamma^{2}+1$	$(1,1,0,1)$
6	$\gamma^{3}+\gamma^{2}$	$(1,1,0,0)$	14	$\gamma^{3}+1$	$(1,0,0,1)$
7	$\gamma^{3}+\gamma+1$	$(1,0,1,1)$			

Compute $\frac{\left(\gamma^{4}+\gamma^{2}+1\right)+\left(\gamma^{3}+\gamma\right)}{\left(1+\gamma+\gamma^{3}\right)\left(1+\gamma^{2}+\gamma^{7}\right)}$ using the
logarithm and antilogarithm tables.
(b) Suppose Lisa sets up an El Gamal cryptosystem with $\mathrm{p}=19,2$ as the primitive root and secret value 5 .
(i) What values should she make public ?
(ii) Balu uses the system and sends the pair $(14,17)$. Find the message.
4. (a) Prove that if n has k distinct odd prime factors, then $2^{\mathrm{k}} \mid \mathrm{n}$.
(b) Susheela wants to use the Digital Signature Algorithm for signing messages. She chooses $q=11, p=23, g=5$, and the secret value 3. Alia wants to sign the message $M=7$. For signing she chooses the value $\mathrm{k}=2$. Find the digital signature.
(c) Give an advantage of the OFB mode of operation over the CFB mode. Also explain a disadvantage of the OFB mode.
5. (a) Apply the poker test to test the randomness of the following sequence with level of significance $\alpha=0.05$.

100110100001000010111101101110100101
101100100110
[You may find the following values useful :
$\chi_{0.05,1}^{2}=3.84146, \chi_{0.05,3}^{2}=7.81473$,
$\left.\chi_{0 \cdot 05,4}^{2}=9 \cdot 48773\right]$
(b) Check whether the polynomial $\mathrm{x}^{6}+\mathrm{x}^{5}+1 \in \mathbb{F}_{2}[\mathrm{x}]$ is irreducible.
6. (a) Solve the equation $5^{x} \equiv 3(\bmod 23)$ using the baby-step giant-step method.
(b) Find a recurrence that generates the sequence 110110110110110.

