M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)
 M.Sc. (MACS)
 Term-End Examination
 June, 2021

MMTE-005 : CODING THEORY

Time: 2 hours
Maximum Marks : 50
(Weightage : 50\%)
Note: Answer any four questions from Questions No. 1 to 5. Question no. 6 is compulsory. All questions carry equal marks. Use of calculators is not allowed.

1. (a) Define the generator matrix of a linear code, and give an example of this.
(b) Define the permutation equivalence of two linear codes, and give an example.
(c) Construct a multiplication table for a finite field with 4 elements.
2. (a) Let C be a non-zero cyclic code in R_{n}. If $g(x)$ is the monic polynomial of minimum degree in C, prove that C is generated by $\mathrm{g}(\mathrm{x})$.
(b) Construct a BCH code of length 13 and designed distance 2. Use the table below :

0	0	0	0	7	1	2	2	14	0	2	0	21	1	0	1
1	0	0	1	8	2	0	2	15	2	0	0	22	0	2	2
2	0	1	0	9	0	1	1	16	0	2	1	23	2	2	0
3	0	1	2	10	1	1	0	17	2	1	0	24	2	2	1
4	1	2	0	11	1	1	2	18	1	2	1	25	2	0	1
5	2	1	2	12	1	0	2	19	2	2	2	26	0	0	1
6	1	1	1	13	0	0	2	20	2	1	1				

Table : \mathbb{F}_{27} with primitive element α, where $\alpha^{3}+2 \alpha+1=0$
3. (a) Let C be the [5, 2] binary code generated by

$$
G=\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

Find the weight distribution of C. Use McWilliam's identity to find the weight distribution of C^{\perp}.
(b) If C is a linear code, show that the minimum weight of C is the same as the minimum distance of C .
4. (a) Find the convolutional code (2, 1) with generator matrix $G=[D, 1+D]$, for the message $1+\mathrm{D}^{2}+\mathrm{D}^{3}$.
(b) Show that the \mathbb{Z}_{4}-linear codes, with generator matrices
$\mathrm{G}_{1}=\left[\begin{array}{llll}1 & 1 & 1 & 3 \\ 0 & 2 & 0 & 2 \\ 0 & 0 & 2 & 2\end{array}\right]$ and $\mathrm{G}_{2}=\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 2 & 0 & 0 & 2 \\ 0 & 2 & 0 & 2\end{array}\right]$,
are monomially equivalent.
(c) Check whether the linear code C , with generator matrix $G=\left[\begin{array}{llll}1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0\end{array}\right]$, is self dual.
5. (a) Let C be a linear code with parity check
matrix, $H=\left[\begin{array}{lllllll}0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1\end{array}\right]$.
(i) List all the codewords of C.
(ii) Is C a perfect code ? Justify your answer.
(b) Check whether there are duadic codes of length :
(i) 17 over \mathbb{F}_{2}
(ii) 37 over \mathbb{F}_{3}

Justify your answers.
6. Which of the following statements are True and which are False? Justify your answers.
(a) Two binary codes of the same length, having the same weight distribution, are equal.
(b) If G is the generator matrix of a linear code C , and $\mathrm{GG}^{\mathrm{t}}=0$, then C is self dual.
(c) $\mathrm{C}=\{(1,0,0),(0,1,0),(0,0,1),(0,0,0)\}$ is a cyclic code.
(d) $\quad \mathbb{F}_{\mathrm{p}} \mathrm{m} \subseteq \mathbb{F}_{\mathrm{p}} \mathrm{n}$ if $\mathrm{m}<\mathrm{n}$.
(e) The parity check matrix of an LDPC code can be the identity matrix.

