M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS) Term-End Examination June, 2021

MMTE-005 : CODING THEORY

Time : 2 hours

Maximum Marks : 50 (Weightage : 50%)

Note: Answer any four questions from Questions No. 1 to 5. Question no. 6 is compulsory. All questions carry equal marks. Use of calculators is not allowed.

1.	(a)	Define the generator matrix of a linear code, and give an example of this.	2
	(b)	Define the permutation equivalence of two linear codes, and give an example.	2
	(c)	Construct a multiplication table for a finite field with 4 elements.	6
2.	(a)	Let C be a non-zero cyclic code in R_n . If $g(x)$ is the monic polynomial of minimum degree in C, prove that C is generated by $g(x)$.	4

(b) Construct a BCH code of length 13 and designed distance 2. Use the table below :

6

7

 \mathcal{B}

 \mathcal{B}

0	0	0	0	7	1	2	2	14	0	2	0	21	1	0	1
1	0	0	1	8	2	0	2	15	2	0	0	22	0	2	2
2	0	1	0	9	0	1	1	16	0	2	1	23	2	2	0
3	0	1	2	10	1	1	0	17	2	1	0	24	2	2	1
4	1	2	0	11	1	1	2	18	1	2	1	25	2	0	1
5	2	1	2	12	1	0	2	19	2	2	2	26	0	0	1
6	1	1	1	13	0	0	2	20	2	1	1				

Table : \mathbb{F}_{27} with primitive element α , where $\alpha^3 + 2\alpha + 1 = 0$

3. (a) Let C be the [5, 2] binary code generated by

$$\mathbf{G} = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 \end{bmatrix}.$$

Find the weight distribution of C. Use McWilliam's identity to find the weight distribution of C^{\perp} .

- (b) If C is a linear code, show that the minimum weight of C is the same as the minimum distance of C.
- 4. (a) Find the convolutional code (2, 1) with generator matrix G = [D, 1+D], for the message $1 + D^2 + D^3$.

MMTE-005

(b) Show that the \mathbb{Z}_4 -linear codes, with generator matrices

$$\mathbf{G}_{1} = \begin{bmatrix} 1 & 1 & 1 & 3 \\ 0 & 2 & 0 & 2 \\ 0 & 0 & 2 & 2 \end{bmatrix} \text{ and } \mathbf{G}_{2} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 0 & 0 & 2 \\ 0 & 2 & 0 & 2 \end{bmatrix},$$

are monomially equivalent.

(c) Check whether the linear code C, with
generator matrix
$$G = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$
, is self
dual.

5. (a) Let C be a linear code with parity check
matrix, H =
$$\begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}.$$

 $(i) \qquad List \ all \ the \ codewords \ of \ C.$

- (ii) Is C a perfect code ? Justify your answer. 8
- (b) Check whether there are duadic codes of length:
 - (i) 17 over \mathbb{F}_2
 - (ii) 37 over \mathbb{F}_3

Justify your answers.

2

5

2

3

- **6.** Which of the following statements are *True* and which are *False* ? Justify your answers.
 - (a) Two binary codes of the same length, having the same weight distribution, are equal.
 - (b) If G is the generator matrix of a linear code
 C, and GG^t = 0, then C is self dual.
 - (c) $C = \{ (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 0) \}$ is a cyclic code.
 - (d) $\mathbb{F}_{p}m \subseteq \mathbb{F}_{p}n \text{ if } m < n.$
 - (e) The parity check matrix of an LDPC code can be the identity matrix.