M.Sc. (MATHEMATICS WITH APPLICATIONS
 IN COMPUTER SCIENCE)

M.Sc. (MACS)

Term-End Examination
June, 2021

MMTE-003 : PATTERN RECOGNITION AND IMAGE PROCESSING

Time : 2 hours
Maximum Marks : 50
Note: Attempt any five questions. All questions carry equal marks. Use of calculator is not allowed.

1. (a) Define the following intensity transformation functions, with suitable examples :
(i) Log Transformations
(ii) Power-Law (Gamma) Transformations
(b) What is Histogram Equalization? Why is it performed ? Perform histogram equalization of the following image :

$$
\left[\begin{array}{lll}
1 & 3 & 5 \\
4 & 4 & 3 \\
5 & 2 & 2
\end{array}\right]
$$

2. (a) Find the DFT to the following image :

$$
\left[\begin{array}{llll}
2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Hence, find its inverse DFT.
(b) Compare high pass filters with low pass filters, with suitable examples.
3. (a) Compute the degree of compression that can be achieved using (i) Huffman coding, and (ii) Run length coding, assuming two-bits to represent the pixel value and two-bits to represent the run length.

$$
I=\left[\begin{array}{llll}
3 & 3 & 3 & 2 \\
2 & 3 & 3 & 3 \\
3 & 2 & 2 & 2 \\
2 & 1 & 1 & 0
\end{array}\right]
$$

(b) Find the entropy of the image

$$
\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 1 & 2 & 2 \\
0 & 1 & 2 & 3 \\
1 & 2 & 2 & 3
\end{array}\right] .
$$

4. (a) Two images $\mathrm{g}_{1}(\mathrm{x}, \mathrm{y})$ and $\mathrm{g}_{2}(\mathrm{x}, \mathrm{y})$ have histograms hg_{1} and hg_{2}, respectively. Give the condition under which the histograms of the following can be determined :

$$
\begin{equation*}
\mathrm{g}_{1}(\mathrm{x}, \mathrm{y})+\mathrm{g}_{2}(\mathrm{x}, \mathrm{y}) \tag{i}
\end{equation*}
$$

(iii) $\mathrm{g}_{1}(\mathrm{x}, \mathrm{y}) \times \mathrm{g}_{2}(\mathrm{x}, \mathrm{y})$
(iv) $\quad \mathrm{g}_{1}(\mathrm{x}, \mathrm{y}) \div \mathrm{g}_{2}(\mathrm{x}, \mathrm{y})$

Hence, obtain the histogram in each case in terms of hg_{1} and hg_{2}.
(b) Construct a 4-directional and 8-directional chain code for the shape of the alphabet ' C '. Hence, obtain its difference code and shape number.
5. (a) Compute MSE and SNR for the images given below :
$\mathrm{f}(\mathrm{x}, \mathrm{y})=\left[\begin{array}{lll}3 & 2 & 1 \\ 1 & 2 & 1 \\ 3 & 2 & 2\end{array}\right]$ and $\hat{\mathrm{f}}(\mathrm{x}, \mathrm{y})=\left[\begin{array}{lll}3 & 1 & 1 \\ 1 & 1 & 2 \\ 1 & 1 & 1\end{array}\right]$
(b) What do you understand by the term Data Compression ? How is relative data redundancy (R) related to the compression ratio (C) ?
6. (a) What is Discrete Cosine Transform (DCT) ? Apply DCT to the following image F :

$$
F=\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right]
$$

(b) Find the minimum D_{4} and D_{8} distances between the marked pixels 1 and 5 for the image

$$
\left[\begin{array}{cccc}
(1) & 2 & 4 & 8 \\
2 & 6 & 4 & 2 \\
1 & 3 & 4 & 5 \\
2 & 2 & 1 & 5
\end{array}\right] .
$$

(c) A 4×4 image is given by $\left[\begin{array}{llll}2 & 3 & 4 & 5 \\ 1 & 2 & 4 & 6 \\ 2 & 3 & 2 & 4 \\ 1 & 5 & 7 & 6\end{array}\right]$.

If this image is filtered by a min filter with a mask \square, find the resultant image, assuming zero padding.
7. (a) Write short notes on the following :
(i) Feature Selection Criteria
(ii) Principal Component Analysis
(iii) Wiener Filtering
(b) Find the value of x for which the mask

$$
\left[\begin{array}{rrrrr}
-1 & -1 & -1 & -1 & -1 \\
-1 & -1 & -1 & -1 & -1 \\
-1 & -1 & \mathrm{x} & -1 & -1 \\
1 & -1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{array}\right]
$$

acts as a high pass filter.

