No. of Printed Pages : 6
MMTE-001

M. Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) [M. Sc. (MACS)]

Term-End Examination

June, 2021
MMTE-001 : GRAPH THEORY

Time : 2 Hours

Maximum Marks : 50
Note: Question No. 1 is compulsory. Answer any
four questions from Question Nos. 2 to 7.
Use of calculators is not allowed.

1. State whether the following statements are true or false. Justify your answers with a short proof or a counter-example :
(i) A regular graph can have arbitrarily large diameter.
(ii) There is a unique tree, with at least 2 vertices, whose complement is also a tree.
(iii) Every graph with a cut-vertex has a cutedge.
(iv) Every Hamiltonian graph has a perfect matching.
(v) If G is an n-vertex graph ($n \geq 3$) with at most $3 n-6$ edges, then G is planar.
2. (a) If u and v are the only odd vertices in a graph G, then show that G has a (u, v) path.
(b) Consider the following graph G :

(i) Find a maximal matching in G which is not a maximum matching.
(ii) Does G have a perfect matching ? Justify your answer.
(c) Check whether (6, 4, 4, 4, 3, 2, 1, 1, 1) is a graphic sequence or not. If yes, find a corresponding graph. If this is not a graphic sequence, then decide whether $(3,1,1)$ is a graphic sequence or not. 4
3. (a) If G is a graph with diameter d, then show that $\alpha(G) \geq \frac{d+1}{2}$.
(b) Use Dijkstra's algorithm to find the shortest distances from s to each of the vertices of the following weighted graph G :

Write down all the steps involved in finding the shortest paths.
(c) Let T be a tree with at least 3 vertices. Let T^{\prime} be the subgraph of T obtained by deleting all the leaves of T. Show that T^{\prime} is a tree.

2
4. (a) Show that any simple graph G can be coloured with at most $\Delta(G)+1$ colours, using the Greedy Colouring Algorithm. 3
(b) Check whether the following graph is: 3
(i) Eulerian or not;
(ii) Planar or not

Justify your answers.

(c) Prove that a k-regular $(k>0)$ bipartite graph has the same number of vertices in each partite set.
5. (a) Construct a minimum weight spanning tree for the following weighted graph, using Prim's Algorithm :

(b) What is the minimum size of a k-chromatic graph ? Justify your answer.

3
(c) Consider the following Hamiltonian graph :

Does it satisfy the Dirac's condition? Does it satisfy Ore's condition ? Justify your answers.
6. (a) Find a non-zero flow on the network given below :

5

(b) Show that $K(G) \leq K^{\prime}(G)$ for any graph G. 5
7. (a) Show that $\mathrm{K}_{3,3}$ is not planar.
(b) Prove that a graph is connected if and only if it contains a spanning tree.
(c) Give an example of a non-regular 2-edgeconnected graph. Justify your choice of example.

MMTE-001

