M.Sc. (MATHEMATICS WITH APPLICATIONS

 IN COMPUTER SCIENCE)M.Sc. (MACS)

Term-End Examination
June, 2021

MMT-007 : DIFFERENTIAL EQUATIONS AND NUMERICAL SOLUTIONS

Time : 2 hours
Maximum Marks : 50
(Weightage : 50\%)
Note: Question no. 1 is compulsory. Attempt any four questions out of the remaining questions no. 2 to 7. Use of scientific non-programmable calculator is allowed.

1. State whether the following statements are True or False. Justify your answer with the help of a short proof or a counter-example. No marks will be awarded without justification. $5 \times 2=10$
(a) The initial value problem

$$
\frac{d y}{d x}=\frac{y-1}{x}, y(0)=1
$$

has a unique solution.
(b) If inverse Laplace transform is denoted by \mathcal{L}^{-1}, then $\mathcal{L}^{-1}\left[\frac{1}{(\mathrm{~s}+1)\left(\mathrm{s}^{2}+1\right)}\right]=\frac{1}{2}\left(\sin \mathrm{t}+\cos \mathrm{t}+\mathrm{e}^{-\mathrm{t}}\right)$.
(c) If the heat conduction equation $u_{t}=u_{x x}$ is approximated by the method

$$
\frac{1}{2 \mathrm{k}}\left(\mathrm{u}_{\mathrm{m}}^{\mathrm{n}+1}-\mathrm{u}_{\mathrm{m}}^{\mathrm{n}-1}\right)=\frac{1}{\mathrm{~h}^{2}}\left(\mathrm{u}_{\mathrm{m}-1}^{\mathrm{n}}-2 \mathrm{u}_{\mathrm{m}}^{\mathrm{n}}+\mathrm{u}_{\mathrm{m}+1}^{\mathrm{n}}\right)
$$

then the order of the method is $\mathrm{O}\left(\mathrm{k}^{3}+\mathrm{kh}\right)$.
(d) For the boundary value problem

$$
y^{\prime \prime}(x)=0, y(0)=y(1), y^{\prime}(0)=y^{\prime}(1)
$$

Green's function does not exist.
(e) To solve the boundary value problem

$$
\left(1+x^{2}\right) y^{\prime \prime}+4 x y^{\prime}+2 y=2
$$

with $\mathrm{y}(0)=0, \mathrm{y}(1)=\frac{1}{2}$,
using first order difference method, the approximations used are

$$
\mathrm{y}_{\mathrm{i}}^{\prime \prime}=\frac{1}{\mathrm{~h}^{2}}\left(\mathrm{y}_{\mathrm{i}+1}-2 \mathrm{y}_{\mathrm{i}}+\mathrm{y}_{\mathrm{i}-1}\right)
$$

and

$$
\mathrm{y}_{\mathrm{i}}^{\prime}=\frac{1}{2 \mathrm{~h}}\left(\mathrm{y}_{\mathrm{i}+1}-\mathrm{y}_{\mathrm{i}-1}\right)
$$

2. (a) Solve, in series, the differential equation $x y^{\prime \prime}=(1+x) y^{\prime}+2 y=0$ about $x=0$.
(b) Using the generating function for Legendre polynomial $\mathrm{P}_{\mathrm{n}}, \mathrm{n}=0,1,2, \ldots$, prove that

$$
\begin{aligned}
& 1+\frac{1}{2} P_{1}(\cos \theta)+\frac{1}{3} P_{2}(\cos \theta)+\ldots= \\
& \ln \left[\frac{1+\sin (\theta / 2)}{\sin (\theta / 2)}\right]
\end{aligned}
$$

3. (a) Using convolution theorem, find the Fourier inverse of the functions $\frac{1}{(\mathrm{i} \alpha+\mathrm{k})^{2}}, \mathrm{k}>0$.
(b) Find the solution to the initial boundary value problem, subject to given initial and boundary conditions, $\frac{\partial u}{\partial \mathrm{t}}=\frac{\partial^{2} \mathrm{u}}{\partial \mathrm{x}^{2}}$,

$$
\begin{aligned}
& u(x, 0)=2 x \text { for } x \in\left[0, \frac{1}{2}\right] \\
& u(0, t)=0=u(1, t) \\
& u(x, 0)=2(-x) \text { for } x \in\left[\frac{1}{2}, 1\right]
\end{aligned}
$$

using Schmidt method with $\lambda=1 / 6$ and $h=0 \cdot 2$.
4. (a) Using Fourier transforms, solve the initial boundary value problem

$$
\frac{\partial^{2} \mathrm{u}}{\partial \mathrm{x}^{2}}=\frac{1}{\mathrm{c}^{2}} \frac{\partial^{2} \mathrm{u}}{\partial \mathrm{t}^{2}},-\infty<\mathrm{x}<\infty, \mathrm{t}>0
$$

with $\mathrm{u}(\mathrm{x}, 0)=\mathrm{f}(\mathrm{x}),\left.\frac{\partial \mathrm{u}}{\partial \mathrm{t}}\right|_{\mathrm{t}=0}=0$.
(b) Reduce the second order initial value problem $\mathrm{y}^{\prime \prime}=\mathrm{y}^{\prime}+3$ with $\mathrm{y}(0)=1$ and $\mathrm{y}(0)=\sqrt{3}$ to a system of first order initial value problems. Hence find $\mathrm{y}(0 \cdot 1)$ and $y^{\prime}(0 \cdot 1)$ using Taylor series method of second order with $\mathrm{h}=0 \cdot 1$.
5. (a) Find the solution of the boundary value problem

$$
\nabla^{2} u=x^{2}+y^{2}, 0 \leq x \leq 1,0 \leq y \leq 1
$$

subject to the boundary conditions
$\mathrm{u}=\frac{1}{12}\left(\mathrm{x}^{2}+\mathrm{y}^{4}\right)$ on the lines $\mathrm{x}=1, \mathrm{y}=0$,
$\mathrm{y}=1$ and $12 \mathrm{u}+\frac{\partial \mathrm{u}}{\partial \mathrm{x}}=\mathrm{x}^{4}+\mathrm{y}^{4}+\frac{\mathrm{x}^{3}}{3}$ on $\mathrm{x}=0$
using the five-point formula. Assume $h=\frac{1}{2}$
along both axes. Use central difference approximation in the boundary conditions.
(b) Find the Fourier cosine transform of

$$
\mathrm{f}(\mathrm{x})=\left[\begin{array}{cl}
\mathrm{x}, & 0<\mathrm{x}<\frac{1}{2} \\
(1-\mathrm{x}), & \frac{1}{2}<\mathrm{x}<1 \\
0, & \mathrm{x}>1
\end{array}\right.
$$

6. (a) Solve the boundary value problem

$$
\begin{aligned}
& \mathrm{y}^{\prime \prime}=\mathrm{xy} \\
& \mathrm{y}(0)+\mathrm{y}^{\prime}(0)=1, \mathrm{y}(1)=1 .
\end{aligned}
$$

Take $\mathrm{h}=\frac{1}{3}$ and use second order method.
(b) Obtain the general solution of the differential equation

$$
\begin{equation*}
(x+3)^{2} y^{\prime \prime}-4(x+3) y^{\prime}+6 y=\ln (x+3) \tag{4}
\end{equation*}
$$

7. (a) Using the generating function for Legendre polynomial $\mathrm{P}_{\mathrm{n}}(\mathrm{x})$, show that

$$
\frac{P_{n+1}(x)-P_{n-1}(x)}{2 n+1}=C+\int P_{n}(x) d x
$$

where C is a constant.
(b) Derive the Fourier-Bessel series for $\mathrm{f}(\mathrm{x})=\mathrm{x}, 0 \leq \mathrm{x} \leq 1$, in terms of the function $J_{1}\left(\lambda_{n} x\right)$, where λ_{n} are the zeros of $J_{1}(x)$.

