M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)

M.Sc. (MACS)

Term-End Examination June, 2021

MMT-005: COMPLEX ANALYSIS

Time: $1\frac{1}{2}$ hours Maximum Marks: 25

Note: Question no. 1 is compulsory. Attempt any three questions from questions no. 2 to 5. Use of calculators is not allowed.

- 1. State, giving reasons, whether the following statements are True or False: $5\times 2=10$
 - (a) If f(z) is analytic on an open and connected set in \mathbb{C} and $|f(z)| \le 1$ then f(z) is a constant.
 - (b) The radius of convergence of functions f(z) and f(iz) are equal.
 - (c) If Re z < 0, then $|e^{-z}| < 1$.
 - (d) If $f(z) = \frac{1}{z^7} \sin z^2$, then Res f(z) at z = 0 is $\frac{-1}{6}$.

- (e) Let C be the circle |z| = 2, then $\int_C \frac{e^{-z}}{z+1} dz = 2\pi i.$
- **2.** (a) Determine an analytic function f(z) whose real part is $U(x, y) = y^2 x^2$.
 - (b) Show that the transformation $w = \frac{1}{z}$ maps the circle |z - 2i| = 2 into a straight line. 3
- 3. (a) Evaluate the integral $\int_{0}^{\infty} (x^{2} iy) dz$ along the path $y = x^{2}$.
 - (b) Prove that $\int\limits_{\gamma}(z-a)^n\ dz=0 \ \ \text{for}\ \ n\ \neq -1,$ where γ is the circle |z-a|=r>0.

3

3

- 4. (a) Let $f(z) = z^2 6z + 9$. Find the maximum and minimum values of |f(z)| in the region $|z| \le 2$.
 - (b) Expand $f(z) = \frac{1}{(z-1)^2 (z-3)}$ in a Laurent series around the point z=1. Specify the region in which the expansion is valid. 2
- 5. Show that $\int_{0}^{\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}.$