M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

Term-End Examination

June, 2021

MMT-004 : REAL ANALYSIS

Time : 2 hours

Maximum Marks : 50 (Weightage : 70%)

Note: Question no. 1 is compulsory. Attempt any four questions from questions no. 2 to 6. Calculators are not allowed.

- 1. State whether the following statements are Trueor False. Give reasons for your answers. $5 \times 2 = 10$
 - (a) The sequence $\{f_n\}$ in $(C[0, 1], d_{\infty})$ given by $f_n(x) = 1 + x^n, x \in [0, 1], n = 1, 2 \dots$ is convergent in C[0, 1] under the sup-metric.
 - (b) The set $\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ is compact in \mathbb{R}^2 .

MMT-004

- (c) If the function $f : \mathbf{R}^n \to \mathbf{R}^n$ is locally invertible at $x_0 \in \mathbf{R}^n$, then the Jacobian of f is non-zero at x_0 .
- (d) Let \mathcal{A} be the class of open set \overline{S} in a metric space X. Then there does not exist a σ -algebra containing \mathcal{A} .

(e) For any measurable function f,
$$\int |f| dm < \left| \int f dm \right|.$$

- (a) Define path connectedness in a metric space. Prove that any continuous image of a path connected set is path connected.
 - (b) State implicit function theorem. Verify the theorem for the function $f: \mathbb{R}^2 \to \mathbb{R}$ given by $f(x, y) = y^2 yx^2 2x^5$ in the neighbourhood of the point (1, -1).

3

4

3

3

4

(c) Let $f : (X, d_1) \rightarrow (Y, d_2)$ be such that $d_2(f(x), f(y) \le 2d_1 (x, y)$ for $x, y \in X$. Show that f is uniformly continuous.

3. (a) For any measurable set E and for any $\epsilon > 0$, prove that there exists an open set O containing E such that m (O \ E) < ϵ .

(b) State and prove the dominated convergence theorem.

MMT-004

2

- (c) For a function f in $L^{1}(\mathbf{R})$, define the Fourier transform \hat{f} . Prove that the Fourier transform \hat{f} is a continuous function on \mathbf{R} .
- **4.** (a) Prove that if a Cauchy sequence in a metric space has a convergent subsequence, then it is convergent.
 - (b) Let f be a C¹ function defined on an open set $E \subset \mathbf{R}^n$ to \mathbf{R}^n . Suppose $Jf(x) \neq 0$ for all $x \in E$. Prove that f(B) is an open set in \mathbf{R}^n for any open set $B \subset E'$.
 - (c) Is the set of irrational numbers measurable ? Justify your answer.
- 5. (a) Does the sequence $\{f_n\}$ where $f_n = \chi_{[n, n+1],} n=1, 2...$ satisfy the conditions of monotone convergence theorem ? Does the conclusion of the theorem hold good for this sequence ? Justify.
 - (b) Define Stable, Casual systems. Give examples of stable, unstable, casual and non-casual systems.
 - (c) Let (X, d) be a metric space and A be a subset of X such that bdy(A) = φ. Show that A is both open and closed.

MMT-004

2

3

4

4

2

4

4

3

6. (a) Show that every sequence in a compact metric space has a convergent subsequence. *3*

(b) Obtain the second Taylor's series expansion for the function f given by

$$f(x, y) = x^2y + xe^y$$
 at (1, 0). 4

 $(c) \qquad Find \ the \ outer \ measure \ of \ the \ set$

E = {x
$$\in$$
 R : sin x = 0} \cup [$\frac{1}{2}$, 1]. 3